
EUROGRAPHICS 2025 / A. Bousseau and A. Dai

(Guest Editors)

COMPUTER GRAPHICS forum

Efficient Perspective-Correct 3D Gaussian Splatting

Using Hybrid Transparency

Florian Hahlbohm1 Fabian Friederichs1 Tim Weyrich2,3 Linus Franke2 Moritz Kappel1

Susana Castillo1 Marc Stamminger2 Martin Eisemann1 Marcus Magnor1,4

1Computer Graphics Lab, TU Braunschweig, Germany {lastname}@cg.cs.tu-bs.de
2 Visual Computing Erlangen, FAU Erlangen-Nürnberg, Germany {firstname.lastname}@fau.de

3University College London, United Kingdom 4University of New Mexico, USA

https://fhahlbohm.github.io/htgs/

Figure 1: We present the first perspectively and simultaneously geometrically accurate approach for real-time rendering of 3D Gaussian splats.

Our temporally stable blending formulation based on hybrid transparency effectively removes the popping artifacts caused by the approximate,

global sorting scheme of 3D Gaussian Splatting (3DGS) [KKLD23]. Additionally, we replace the approximate projection used in 3DGS

with a novel, numerically stable formulation for evaluation of general 3D Gaussians along per-pixel rays to improve rendering quality. We

also achieve a significant speedup compared to state-of-the-art approaches addressing these challenges [HYC∗24,RSP∗24], as our blending

formulation only requires partial depth-ordering and our splat evaluation is well-suited for rasterization.

Abstract

3D Gaussian Splats (3DGS) have proven a versatile rendering primitive, both for inverse rendering as well as real-time exploration

of scenes. In these applications, coherence across camera frames and multiple views is crucial, be it for robust convergence of a

scene reconstruction or for artifact-free fly-throughs. Recent work started mitigating artifacts that break multi-view coherence,

including popping artifacts due to inconsistent transparency sorting and perspective-correct outlines of (2D) splats. At the same

time, real-time requirements forced such implementations to accept compromises in how transparency of large assemblies of

3D Gaussians is resolved, in turn breaking coherence in other ways. In our work, we aim at achieving maximum coherence,

by rendering fully perspective-correct 3D Gaussians while using a high-quality approximation of accurate blending, hybrid

transparency, on a per-pixel level, in order to retain real-time frame rates. Our fast and perspectively accurate approach for

evaluation of 3D Gaussians does not require matrix inversions, thereby ensuring numerical stability and eliminating the need

for special handling of degenerate splats, and the hybrid transparency formulation for blending maintains similar quality as

fully resolved per-pixel transparencies at a fraction of the rendering costs. We further show that each of these two components

can be independently integrated into Gaussian splatting systems. In combination, they achieve up to 2× higher frame rates, 2×

faster optimization, and equal or better image quality with fewer rendering artifacts compared to traditional 3DGS on common

benchmarks.

CCS Concepts

• Computing methodologies → Rendering; Point-based models; Rasterization; Machine learning approaches;

© 2025 The Author(s). Computer Graphics Forum published by Eurographics - The European Asso-

ciation for Computer Graphics and John Wiley & Sons Ltd.

This is an open access article under the terms of the Creative Commons Attribution License, which

permits use, distribution and reproduction in any medium, provided the original work is properly

cited.

DOI: 10.1111/cgf.70014

CGF | e70014

https://orcid.org/0009-0004-8710-1433
https://orcid.org/0000-0003-0777-7229
https://orcid.org/0000-0002-4322-8844
https://orcid.org/0000-0001-8180-0963
https://orcid.org/0000-0001-9507-5141
https://orcid.org/0000-0003-1245-4758
https://orcid.org/0000-0001-8699-3442
https://orcid.org/0000-0002-8673-4405
https://orcid.org/0000-0003-0579-480X
https://fhahlbohm.github.io/htgs/
https://doi.org/10.1111/cgf.70014
http://crossmark.crossref.org/dialog/?doi=10.1111%2Fcgf.70014&domain=pdf&date_stamp=2025-04-10

2 of 12 F. Hahlbohm et al. / Efficient Perspective-Correct 3D Gaussian Splatting Using Hybrid Transparency

1. Introduction

Novel view synthesis has undergone a significant transformation

with the advent of Neural Radiance Fields (NeRF) [MST∗20] and

3D Gaussian Splatting (3DGS) [KKLD23], both of which have

established themselves as powerful techniques for rendering com-

plex 3D scenes. Among these, 3DGS has emerged as the de-facto

representation for user-facing radiance field applications due to its

fast optimization and real-time rendering capabilities. Its speed and

efficiency stem from an explicit point-based representation, where

each point’s extent is modeled by an anisotropic 3D Gaussian. Using

fast, tile-based rasterization, this can be efficiently implemented on

modern GPUs.

However, the remarkable performance of 3DGS is achieved

through a series of approximations that, while effective in many

scenarios, introduce limitations in multi-view consistency. One sig-

nificant issue arises from the affine approximation used in projecting

3D Gaussian splats onto the image plane, causing differing pixel

contributions depending on camera placement. Another one is the per-

primitive sorting, which causes elliptical color patches to suddenly

appear or disappear during movement (called popping [RSP∗24]).

In order to solve the issues, it is necessary to accurately sort and

evaluate Gaussians per pixel, introducing a strong bottleneck on

the sorting stage. In this paper, we introduce an pipeline which

improves the original 3DGS framework in eliminating these artifacts

while offering superior performance through a hybrid transparency

approximation.

For projection artifacts, although the affine approximation per-

forms well on benchmark datasets, it fails to model perspective

distortion correctly, especially when parts of the scene are viewed at

close distances. The result are visually disturbing artifacts, where

the projected Gaussians take on extreme, distorted shapes, severely

affecting the rendering quality (see Fig. 2).

Recent work on 2D Gaussian Surfels [HYC∗24] has made

strides in achieving perspective-accurate rendering by leverag-

ing established techniques from Sigg et al. [SWBG06] and

Weyrich et al. [WHA∗07]. For 3D Gaussians, concurrent research

explores evaluating splats by calculating intersection points with

3DGS Ours

Figure 2: In 3DGS [KKLD23], Kerbl et al. use an affine approxi-

mation for projecting 3D Gaussians. Common benchmarks do not

include viewpoints where this approximation matter is highlighted.

Here, we demonstrate the benefits of our perspective-correct projec-

tion by comparing renderings from 3DGS and our method.

per-pixel viewing rays [YSG24]. This approach can be implemented

in ray-tracing frameworks [MLMP∗24], whose rendering speeds are

significantly lower. Alternatively, the rasterization-based approach

faces numerical instability due to the matrix inversions required,

making optimization via gradient descent challenging and prone to

catastrophic failure if handled incorrectly.

In this paper, we propose a fast, differentiable method for

perspective-accurate 3D Gaussian splat evaluation at the point

of maximum contribution along per-pixel viewing rays that avoids

matrix inversion entirely.

The second issue with 3DGS lies in depth ordering during render-

ing, where only the view-space depth of the mean is considered. This

causes incorrect per-pixel blending order of fragments, leading to

the so-called “popping” artifacts that disrupt multi-view consistency

and especially the viewing experience in motion. Recent work, such

as StopThePop [RSP∗24], addresses this through hierarchical sorting,

which is comprised of global presorting and then locally sorting

within a sliding window, with progressively lower tile sizes.

We propose a similar idea, based on the established rendering

paradigm of Hybrid Transparency [Wym16], which lets us skip the

global presorting and provides high performance. By alpha-blending

the first fragments (called the core) in correct depth-order per

pixel and accumulating remaining contributions (the tail) using

an order-independent residual, our method mitigates the popping

artifacts (see Fig. 3) while maintaining superior performance.

View Rotated View

Approximate Sorting + Alpha Blending (3DGS)

View Rotated View

Hybrid Transparency (Ours)

Figure 3: Radl et al. [RSP∗24] discuss how 3DGS approximates

depth-ordering for alpha blending, leading to popping artifacts dur-

ing view rotation. To solve this without sacrificing performance, we

propose a hybrid transparency approach, combining alpha blending

with order-independent transparency, resulting in temporally stable

rendering and an improved viewing experience.

© 2025 The Author(s).

Computer Graphics Forum published by Eurographics and John Wiley & Sons Ltd.

 1
4
6
7
8
6
5
9
, 0

, D
o
w

n
lo

ad
ed

 fro
m

 h
ttp

s://o
n
lin

elib
rary

.w
iley

.co
m

/d
o
i/1

0
.1

1
1
1
/cg

f.7
0
0
1
4
 b

y
 F

ried
rich

-A
lex

an
d
er U

n
iv

ersität O
f E

rlan
g
en

-N
ü
rn

b
erg

, W
iley

 O
n
lin

e L
ib

rary
 o

n
 [1

1
/0

4
/2

0
2
5
]. S

ee th
e T

erm
s an

d
 C

o
n
d
itio

n
s (h

ttp
s://o

n
lin

elib
rary

.w
iley

.co
m

/term
s-an

d
-co

n
d
itio

n
s) o

n
 W

iley
 O

n
lin

e L
ib

rary
 fo

r ru
les o

f u
se; O

A
 articles are g

o
v
ern

ed
 b

y
 th

e ap
p
licab

le C
reativ

e C
o
m

m
o
n
s L

icen
se

F. Hahlbohm et al. / Efficient Perspective-Correct 3D Gaussian Splatting Using Hybrid Transparency 3 of 12

These two enhancements – perspective-accurate splat evaluation

and improved depth-ordering – can be integrated into existing

3DGS systems independently. In our implementation, we combine

both improvements, demonstrating that they not only eliminate the

respective artifacts but also enhance rendering speed, crucial for

real-time applications that rely on fast scene inspection. In summary,

we make the following contributions:

• We present a novel, matrix inversion-free ray-splat intersection

method within a differentiable renderer for 3D Gaussian splats,

resulting in numerically stable optimization and fully perspective-

correct rendering.

• We introduce hybrid transparency to 3D Gaussian splat rendering,

resulting in both very stable results and improved performance.

• We evaluate our efficient implementation, which outperforms

established methods significantly, while matching or exceeding

their visual fidelity.

2. Related Work

This work is at the intersection of novel view synthesis, Gaussian

splatting, and order-independent transparency.

2.1. Novel View Synthesis

Novel view synthesis aims to render images of a scene from arbitrary

viewpoints given a fixed number of input images.

The field has recently been revolutionized by Neural Radiance

Fields (NeRF) introduced by Mildenhall et al. [MST∗20]. NeRF

represents a scene by optimizing a large MLP that maps posi-

tions and viewing directions to volumetric density and color. The

use of differentiable volume rendering enables optimization us-

ing gradient descent, which leads to high-quality results; however,

NeRF’s slow training and rendering process hinders its use in inter-

active applications. To accelerate NeRF, voxel grids with trilinear

interpolation were introduced, offering faster, continuous repre-

sentations [FKYT∗22, SSC22]. Memory-efficient methods, such

as multi-resolution hash tables [MESK22] and tensor factoriza-

tion [CXG∗22, RSV∗23], further reduce computational overhead.

The current state-of-the-art method in terms of image quality, Zip-

NeRF [BMV∗23], combines these grid-based methods with solutions

addressing aliasing issues [BMT∗21,BMV∗22].

Alternatively, point-based models use explicit point clouds for

geometry, rendering images through fast rasterization. Due to the

discrete nature of point clouds, recent point-based radiance field

methods employ large convolutional neural networks (CNN) for hole-

filling in image-space [ASK∗20,RFS22,FRF∗23,KPLD21,HFF∗23]

or MLPs for feature decoding [KLR∗22], but these NNs are com-

putationally expensive. Addressing this limitation, Franke et al.

showed that assigning a radius to each point in combination with

trilinear interpolation into an image pyramid allows using a smaller

CNN [FRFS24]. While enabling fast rendering, image quality of

point-based models is often lacking behind implicit NeRF- and

grid-based models. Very recently, Hahlbohm et al. showed that point-

based models and grid-based models can be combined to improve

image quality and robustness [HFK∗25]. Remaining issues with

point-based models are temporal instabilities and the reliance on ded-

icated GPUs, which are both due to the used CNN. Another approach

involves converting a trained NeRF model into a faster representation

for inference [HSM∗21,YLT∗21]. Recent methods achieve impres-

sive frame rates with only a small quality loss via triangle mesh

baking [YHR∗23, RGS∗24] or distilling of state-of-the-art NeRF

models into memory-efficient, hybrid representations [DHR∗24].

While they render exceptionally fast even on low-end mobile devices,

a major disadvantage is their reliance on the NeRF model that needs

to be trained before the – often equally expensive – baking process.

Other approaches that proved effective directly optimize a triangle

mesh [CFHT23] or a set of tetrahedra [KS23].

2.2. Gaussian Splatting

In early work on point-based rendering, points were rasterized as

opaque splats [GD98,RL00,PZvBG00] and thus suffered from strong

aliasing. It was shown that quality can be significantly improved using

semitransparent splats [ZPvBG01b], however this requires costly

sorting and blending operations. To address performance issues,

fast algorithms for then GPUs [BHZK05] or dedicated hardware

implementations [WHA∗07] were proposed.

More recently, point-based rendering regained momentum as a

powerful primitive for differentiable rendering in novel view syn-

thesis [KPLD21,ASK∗20,RFS22]. In 2023, Kerbl et al. [KKLD23]

re-introduced rasterization-based rendering of point primitives with

anisotropic Gaussian extent in their seminal work 3D Gaussian Splat-

ting (3DGS). Utilizing fast, tile-based rasterization [LZ21], 3DGS

optimizes a set of explicit 3D Gaussians via gradient descent and an

adaptive density control mechanism. Due exceptionally fast rendering

during inference, 3DGS has inspired a plethora of follow-up research

addressing, e.g., anti-aliasing [YCH∗24], compression [BKL∗24],

dynamic scenes [LKLR24,WYF∗24], large scenes [KMK∗24], and

the reliance on an initial point cloud [KRS∗24, NMR∗25]. Espe-

cially relevant to this work is StopThePop by Radl et al. [RSP∗24],

which employs a hierarchical sorting approach to reduce popping

artifacts originating from approximate sorting used in 3DGS. No-

tably, the per-pixel ordering resulting from this hierarchical sorting

approach is not guaranteed to be fully correct. We also present a

method for avoiding these popping artifacts, but achieve this by

changing the blending procedure to a hybrid transparency-based

approach so that our method only requires partial depth-ordering

of the initial splats contributing to each pixel color. Thus, we

avoid the need for a sophisticated sorting implementation which,

even when compared to the approximate solution used by 3DGS,

improves performance. Equally important in the context of this work

is the perspectively accurate 2D Gaussian Splatting (2DGS) by

Huang et al. [HYC∗24] as well as concurrent work that introduces

ray tracing into the 3DGS framework [YSG24,MLMP∗24]. While

the latter also provide a perspectively accurate rendering formulation

by using ray tracing, they introduce a significant slowdown during

both the optimization and subsequent inference. Furthermore, their

evaluation of the 3D Gaussian primitives relies on matrix inversion,

which is prone to numerical instabilities when Gaussians fall flat

along one or more principal axes. The perspectively correct approach

by Huang et al. [HYC∗24] circumvents these numerical instabil-

ities by utilizing an optimized approach for 2D, i.e., degenerate

3D Gaussians [SWBG06,WHA∗07]. Regarding the perspectively

correct rendering of non-degenerate 3D Gaussians, projecting each

© 2025 The Author(s).

Computer Graphics Forum published by Eurographics and John Wiley & Sons Ltd.

 1
4
6
7
8
6
5
9
, 0

, D
o
w

n
lo

ad
ed

 fro
m

 h
ttp

s://o
n
lin

elib
rary

.w
iley

.co
m

/d
o
i/1

0
.1

1
1
1
/cg

f.7
0
0
1
4
 b

y
 F

ried
rich

-A
lex

an
d
er U

n
iv

ersität O
f E

rlan
g
en

-N
ü
rn

b
erg

, W
iley

 O
n
lin

e L
ib

rary
 o

n
 [1

1
/0

4
/2

0
2
5
]. S

ee th
e T

erm
s an

d
 C

o
n
d
itio

n
s (h

ttp
s://o

n
lin

elib
rary

.w
iley

.co
m

/term
s-an

d
-co

n
d
itio

n
s) o

n
 W

iley
 O

n
lin

e L
ib

rary
 fo

r ru
les o

f u
se; O

A
 articles are g

o
v
ern

ed
 b

y
 th

e ap
p
licab

le C
reativ

e C
o
m

m
o
n
s L

icen
se

4 of 12 F. Hahlbohm et al. / Efficient Perspective-Correct 3D Gaussian Splatting Using Hybrid Transparency

Gaussian onto a tangential plane of the unit sphere around the cam-

era [HBG∗24] works well but significantly slows down optimization

and subsequent inference. In this work, we present an approach that

enables perspectively correct rendering of 3D Gaussians through ray-

splat intersection: we extend the perspectively correct approach of

Weyrich et al. [WHA∗07] to work with non-degenerate 3D Gaussians,

which enables the use of ray-splat intersection for rasterization-based

rendering with negligible overhead and no issues with respect to

numerical instabilities.

2.3. Order-Independent Transparency

The seminal Porter-Duff algorithm [PD84] blends two semi-

transparent surfaces correctly, but extending it to more than two

requires costly sorting of the input primitives, and even produces

wrong results in case of intersecting primitives. Several techniques

have been developed relying on even more costly per-pixel sorting

to circumvent this problem, either by sorting explicitly [Car84]

or implicitly using multiple render passes [Eve01, BM08]. These

algorithms are in general invariant to the order of input primitives

and produce correct results, and are therefore called exact order-

independent transparency (OIT) methods. A good overview can be

found in [Wym16]. A plethora of approaches try to approximate

exact OIT by avoiding the costly sorting step. Some of them are not

truly order-independent: the outcome still varies slightly depending

on the order of input primitives [BCL∗07,ESSL10,SML11,SV14].

True, approximate OIT algorithms generally modify the blending

operations to achieve order-invariance. Ignoring the order-dependent

parts of the alpha blending formula results in the “weighted sum”

operator [Mes07], which works well with surfaces of small opac-

ity but becomes increasingly inaccurate for more opaque surfaces,

causing over-darkening or over-brightening. The weighted blended

order-independent transparency (WBOIT) operator avoids the over-

darkening by replacing the opacity and surface colors with opacity-

weighted averages and introducing a monotonic decreasing depth

weighting factor, heuristically reducing the influence of distant sur-

faces [MB13]. This approach works well for surfaces of low opacity

and similar color, like smoke, but becomes problematic for almost

opaque surfaces, and the weighting function needs to be tuned for

every scene to achieve optimal results. Extending this approach to

rendering the surfaces into layers and applying the WBOIT oper-

ator to each before blending the resulting colors in order provides

an interesting trade-off between quality and efficiency [FEE21].

Moment-based transparency techniques remedy some of the short-

comings of WBOIT by computing moments of the transmittance

which are used in a second pass to reconstruct an approximate

transmittance function, that weighs the influence of each surface

on the final color [MKKP18]. Sharp changes in the transmittance

function are not well captured at a lower number of power moments,

whereas higher numbers decrease the computational efficiency. As

the influence of later surfaces is generally less than the first surfaces

due to decreasing transmittance, another, truly order-independent

approach is hybrid transparency that blends the first surfaces

correctly (including sorting), whereas the remaining surfaces are

blended without sorting [MCTB13]. In this work, we integrate this

hybrid transparency approach into the 3DGS framework and extend

the formulation proposed by Maule et al. to improve its behavior

within a gradient descent-based optimization scheme.

3. Method

We introduce the employed scene representation and then describe

the two parts of our contribution.

3.1. Preliminaries

Following Kerbl et al. [KKLD23], we represent the scene using a set

of 3D points with anisotropic Gaussian extent as a proxy for geometry.

Cutting each Gaussian at 3f results in ellipsoid-shaped splats. Each

splat is defined by its 3D mean - ∈ R3, a scalar opacity value

> ∈ R, three principal tangential vectors tD, tE , tF ∈ R3 modeling its

orientation, and three scalars BD, BE , BF ∈ R modeling its scale. Note

that tD, tE , tF represent a 3D rotation, which allows modeling these

parameters using a quaternion @ ∈ R4 that is easier to optimize

via gradient descent. For rendering, we obtain a valid opacity

value in [0,1] using a Sigmoid activation, represent BD, BE , BF in

logarithmic space, and ensure @ is normalized. The view-dependent

color representation based on spherical harmonics (SH) is identical

to 3DGS, i.e., each point uses SH up to degree 3 resulting in 48

coefficients total.

For any point x ∈ R3, we can obtain an U value for a given 3D

Gaussian by multiplying its opacity with the value of the Gaussian

at that point:

U = > · e−
1

2
ρ(x)2

using ρ(x)2 = (x− -))O−1 (x− -), (1)

where O−1 can easily be computed from (tD, tE , tF) and (BD, BE , BF)

(cf. Kerbl et al. [KKLD23]). These U values are then used in conjunc-

tion with the view-dependent RGB color c ∈ R3 when computing

per-pixel colors through standard depth-sorted alpha blending of all

contributing splats:

� =

#∑
8=1

U8)8c8 , with)8 =

8−1∏
9=1

(1−U 9). (2)

3.2. Accurate Splat Bounding and Evaluation

In 3DGS, Kerbl et al. [KKLD23] project a 3D Gaussian onto the

image plane using the Jacobian of the affine approximation of the

projective transformation [ZPvBG01a]. The result is a 2D Gaussian

that can easily be evaluated for each pixel and also allows for easy

construction of an axis-aligned bounding box around the center (e.g.,

at 3f) in screen space for accelerated computation. However, this

approach is not fully perspective-accurate, meaning it introduces

artifacts when splats are viewed from certain angles (see Fig. 2).

In this work, we propose a solution for this problem that builds

upon an established approach for perspectively accurate rendering

of ellipsoidal surfaces by Sigg et al. [SWBG06] and the respective

optimizations by Weyrich et al. [WHA∗07] for 2D Gaussian splats.

It should be noted that these approaches elegantly avoid the matrix

inversions required by similar approaches (e.g., Eq. (1)), which makes

them numerically stable even for degenerate splats, i.e., those where

one or more main axes vanish. Notably, Huang et al. [HYC∗24] also

base their perspectively accurate ray-splat intersection and evaluation

on the aforementioned work. However, their approach only works for

2D Gaussians, i.e., degenerate splats. In contrast, we now introduce

an approach that enables perspectively accurate 3D splat evaluation

© 2025 The Author(s).

Computer Graphics Forum published by Eurographics and John Wiley & Sons Ltd.

 1
4
6
7
8
6
5
9
, 0

, D
o
w

n
lo

ad
ed

 fro
m

 h
ttp

s://o
n
lin

elib
rary

.w
iley

.co
m

/d
o
i/1

0
.1

1
1
1
/cg

f.7
0
0
1
4
 b

y
 F

ried
rich

-A
lex

an
d
er U

n
iv

ersität O
f E

rlan
g
en

-N
ü
rn

b
erg

, W
iley

 O
n
lin

e L
ib

rary
 o

n
 [1

1
/0

4
/2

0
2
5
]. S

ee th
e T

erm
s an

d
 C

o
n
d
itio

n
s (h

ttp
s://o

n
lin

elib
rary

.w
iley

.co
m

/term
s-an

d
-co

n
d
itio

n
s) o

n
 W

iley
 O

n
lin

e L
ib

rary
 fo

r ru
les o

f u
se; O

A
 articles are g

o
v
ern

ed
 b

y
 th

e ap
p
licab

le C
reativ

e C
o
m

m
o
n
s L

icen
se

F. Hahlbohm et al. / Efficient Perspective-Correct 3D Gaussian Splatting Using Hybrid Transparency 5 of 12

w v

u

y1
πx1

π
(c)

x1
π

y1
π

(b)

x

d

m

(d)(a)

y
1

y
2

x1 x2

∥m∥ = 2�

� =

∥d∥ ∥x∥
2

ρ = ∥x∥

Figure 4: The perspectively correct screen-space bounding box of a splat (a) is given by the projection of its bounding frustum in view space

(b). When transformed into local splat coordinates, the frustum planes align with tangential planes of the unit sphere (c). Our approach for

splat evaluation along viewing rays makes use of the Plücker coordinate representation (d : m). In local splat coordinates, the point along the

ray that maximizes the Gaussian’s value corresponds to the point x that minimizes the perpendicular distance ∥x∥ to the origin (d). Parts (a-c)

courtesy of Weyrich et al. [WHA∗07]; used with permission.

along per-pixel viewing rays. Thus, our approach is more general

compared to Huang et al., as the 3D Gaussians we use may still

degenerate to 2D Gaussians without impacting the optimization or

rendering due to the numerical stability of our approach.

We start by describing the approach for computing tight, axis-

aligned screen-space bounding boxes for each 3D Gaussian. We

define the model-view matrix " ∈ R4×4, the projection to clip-space

% ∈ R4×4, and the viewport transform+ ∈ R4×4 mapping to window

coordinates. Using the per-splat attributes described in Sec. 3.1, the

transformation) ′ ∈ R4×4 from the normalized splat space (where

the Gaussian’s ellipsoid becomes the unit sphere) to screen space is:

) ′ =+%"), where) =

©«

| | | |
BD tD BE tE BF tF -
| | | |

0 0 0 1

ª®®®¬
(3)

is the transformation from normalized splat space to world space. Us-

ing Weyrich et al.’s optimization of Sigg et al.’s bounding box

computation [SWBG06], extended to non-degenerate (full 3D)

Gaussians, the desired tight 3D bounding box in screen space

is [11, C1] × [12, C2] × [13, C3] (bottom and top values, 18 and C8 , for

8 ∈ {1,2,3} the G, H, and I coordinate, respectively) is:

18 = ?8 − ℎ8 (4)

C8 = ?8 + ℎ8 , (5)

with

B = ⟨(ρ2 ,ρ2 ,ρ2 ,−1),) ′
4
⊙) ′

4
⟩ , ρ2 = 2ln

>

gU
, (6)

f =
1

B
(ρ2 ,ρ2 ,ρ2 ,−1) , (7)

?8 = ⟨ f ,) ′8 ⊙)
′
4
⟩ , (8)

ℎ8 =

√
?2

8
− ⟨ f ,) ′

8
⊙) ′

8
⟩ , (9)

and) ′
8

the 8-th row of) ′, ⊙ denoting component-wise multiplication,

and the dot product denoted by ⟨·, ·⟩. A key advantage of this

calculation, for which we provide a visual explanation in Fig. 4,

is that it offers a closed-form solution without the need for matrix

inversion and regardless of whether the ellipsoid is degenerate in

any direction. Following Radl et al. [RSP∗24], we also compute an

individual cutoff value for each splat to obtain smaller bounding

boxes when their opacity value is less than one based on gU, a

hyperparameter defining the minimum U value of a fragment for it

not to be skipped during blending (see Eq. (1)).

Next, we seek to compute the value of the 3D Gaussian for

a given viewing ray. In computer graphics, ray intersections with

deformed primitives, such as our 3D splats, are an established practice

since the dawn of ray tracing, generally following the approach of

inversely transforming a viewing ray into the undeformed space. In

our case, re-using quantities of the bounding-box setup above, this

would mean transforming the ray by (+%"))−1 into splat space,

where the distance of the transformed ray to the origin yields ρ,

Eq. (1). In order to avoid the matrix inversion that we successfully

sidestepped during bounding-box calculation, we once again follow

Weyrich et al. and represent a viewing ray through a pixel at (Gs, Hs) as

two perpendicular planes 0G = (1,0,0,−Gs)
⊤ and 0H = (0,1,0,−Hs)

⊤

in screen space. Note that we follow the common convention of

representing planes as homogeneous vectors p = (0, 1, 2, 3)⊤, so

that a point x lies on the plane if and only if p⊤x = 0. In contrast

to 3D points, transforming those planes by (+%"))−1 into planes

0s
G/H

in splat space requires the inverse-transposed mapping, that is:

0s
G/H

=

(
(+%"))−1

)−⊤
0G/H = (+%"))⊤0G/H , (10)

once again sidestepping inversion. Next up, intersection of 0s
G and

0s
H yields the viewing ray in splat space, and its distance to the origin

is ρ. In contrast to Weyrich et al., however, ρ cannot quite as easily be

computed, due to the non-degeneracy of our 3D Gaussians. Instead,

we employ the dual Plücker coordinate representation that derives

the mapped viewing ray L∗
s from the intersection of 0s

G/H
from their

coefficients 0s
G =: (01

: 02
: 03

: 00), and 0s
H =: (11

: 12
: 13

: 10),

respectively:

L∗
s = (?23

: ?31
: ?12

: ?01
: ?02

: ?03) , (11)

with ?8 9 =

����08 0 9

18 1 9

���� = 081 9 − 0 918 . (12)

The line’s dual Plücker coordinates L∗
s are numerically equivalent

to its primal Plücker coordinates Ls up to some common scaling

© 2025 The Author(s).

Computer Graphics Forum published by Eurographics and John Wiley & Sons Ltd.

 1
4
6
7
8
6
5
9
, 0

, D
o
w

n
lo

ad
ed

 fro
m

 h
ttp

s://o
n
lin

elib
rary

.w
iley

.co
m

/d
o
i/1

0
.1

1
1
1
/cg

f.7
0
0
1
4
 b

y
 F

ried
rich

-A
lex

an
d
er U

n
iv

ersität O
f E

rlan
g
en

-N
ü
rn

b
erg

, W
iley

 O
n
lin

e L
ib

rary
 o

n
 [1

1
/0

4
/2

0
2
5
]. S

ee th
e T

erm
s an

d
 C

o
n
d
itio

n
s (h

ttp
s://o

n
lin

elib
rary

.w
iley

.co
m

/term
s-an

d
-co

n
d
itio

n
s) o

n
 W

iley
 O

n
lin

e L
ib

rary
 fo

r ru
les o

f u
se; O

A
 articles are g

o
v
ern

ed
 b

y
 th

e ap
p
licab

le C
reativ

e C
o
m

m
o
n
s L

icen
se

6 of 12 F. Hahlbohm et al. / Efficient Perspective-Correct 3D Gaussian Splatting Using Hybrid Transparency

factor _:

Ls =: (d : m) = (?01 : ?02 : ?03 : ?23 : ?31 : ?12) (13)

= (_?23
: _?31

: _?12
: _?01

: _?02
: _?03) (14)

where d is the ray direction in splat space and m is its moment

around the origin (see Fig. 4 for a visualization). From the known

equality distance(Ls,origin) =
∥m∥
∥d∥

, it follows that:

ρ(x)2 =

∥_(?01, ?02, ?03)⊤∥2

∥_(?23, ?31, ?12)⊤∥2
=

0011 − 0110

0012 − 0210

0013 − 0310

2

0213 − 0312

0311 − 0113

0112 − 0211

2
. (15)

Note that we directly compute ρ(x)2 for Eq. (1). This formulation

is numerically stable, as the only potential issue – a vanishing de-

nominator in Eq. (15) – can easily be detected and corresponds

to the ray missing the splat. Conveniently, the obtained value cor-

responds to the point along the pixel’s viewing ray where the

Gaussian has the highest value, essentially making it equivalent to

the numerically unstable and slower approaches used in concurrent

works [YSG24,MLMP∗24]. Compared to Kerbl et al. [KKLD23],

our calculations incur reduced setup costs for each Gaussian but

slightly higher costs per pixel, which is in fact a desirable tradeoff

whenever graphics primitives cover only few pixels [MBDM97].

Moreover, the added computations are exclusively additions and

multiplications, except for the division in Eq. (15), meaning they are

both fast and trivial to differentiate.

3.3. Temporally-Stable Rendering via Hybrid Transparency

In 3DGS, Kerbl et al. [KKLD23] use a tile-based rasterization

approach to efficiently render images from a set of 3D Gaussian

primitives. To achieve robust optimization via gradient descent, they

compute per-pixel color by applying standard U-blending, Eq. (2),

in depth-sorted order. In this work, we propose to integrate a hybrid-

transparency approach for blending into the 3DGS framework. This

is motivated by three observations: (1) The global sorting scheme

proposed by Kerbl et al. [KKLD23] sorts splats as a whole, leading

to incorrectly resolved splat-splat intersections and temporal inco-

herence (“popping”) during rendering and optimization; resolving

these artifacts through a full sort of all 3D Gaussian pixel fragments,

however, is prohibitively slow and thus approximate sorting is re-

quired (cf. Radl et al. [RSP∗24]). (2) As we will demonstrate in our

experiments, using “full” OIT, which forgoes sorting completely,

works well during optimization and even improves background re-

construction but results in semi-transparent foreground rendering,

which is clearly undesirable for novel-view synthesis and recon-

struction methods. (3) Blending only the first contributions for

each pixel has been shown to work well in differentiable rendering

frameworks while also much faster than approaches that require a

complete sort [LZ21,FRFS24].

The hybrid-transparency approach [MCTB13] splits up the per-

pixel color computation into two parts: The core that uses standard

U-blending to blend the first contributions for each pixel, including

sorting. All remaining contributions are combined into a tail, that

is blended without sorting. To decide whether a splat is one of the

first , we need to compute a pixel-specific depth value for each of

them, i.e., the I-value of the point of evaluation x (see Fig. 4) in

view space. Re-using the intermediate values of our splat evaluation

(see Sec. 3.2), xview can be computed efficiently by

xview = ")
d×m

∥d∥2
. (16)

As in Sec. 3.2, xview is the splat’s point of maximum contribution

along the pixel ray, which again makes our computation compatible

with the numerically unstable and slower approaches used in recent

work [RSP∗24]. In our implementation, we keep track of the first

 contributions and accumulate all of the (# −) contributions for

each pixel to then compute its color as

� =

 ∑
8=1

U8)8c8 +) +1

(
(1−)tail)ctail +)tailcbg

)
, (17)

with

)8 =

8−1∏
9=1

(1−U 9), ctail =

∑#
8= +1

U8c8∑#
8= +1

U8
,)tail =

#∏
8= +1

(1−U8) . (18)

Notably, our computation of)tail is more accurate compared to

the average-based formulation of Maule et al. [MCTB13]. As the

partial derivative of the blending function is the same for all splats

inside the tail, our approach allows pre-computing all required

partial derivatives for each pixel during the forward pass. Thus, our

backward pass can be implemented very efficiently.

4. Experiments

We conduct multiple experiments on established datasets to validate

our approach.

4.1. Setup

Following recent work, we evaluate on the established Mip-

NeRF360 [BMV∗22] and Tanks and Temples [KPZK17] datasets,

which provide a diverse set of 17 real scenes with varying chal-

lenges. We use all nine scenes from the Mip-NeRF360 dataset as

well as all eight scenes from the intermediate set of the Tanks and

Temples dataset resulting in a total of 17 scenes. This allows us to

evaluate our method on a broad spectrum of challenges regarding

both geometric and photometric aspects. As is common practice,

we use the 4× / 2× downscaled images for the outdoor/indoor

scenes of the Mip-NeRF360 dataset. For the Tanks and Temples

scenes, we use the full-resolution images to evaluate performance

at full HD resolution. To compute meaningful quality metrics, we

use the established 7:1 train/test split [BMV∗22] for all scenes.

Central to our evaluation is the comparison against the original 3D

Gaussian Splatting [KKLD23]. Furthermore, we compare against

the recent StopThePop [RSP∗24], 2D Gaussian Splatting [HYC∗24],

and Huang et al.’s approach [HBG∗24], as they also provide solu-

tions for the problems addressed in this work. For StopThePop, we

report results of both model variants the authors propose in their

paper [RSP∗24]. We also compare against Gaussian Opacity Fields

© 2025 The Author(s).

Computer Graphics Forum published by Eurographics and John Wiley & Sons Ltd.

 1
4
6
7
8
6
5
9
, 0

, D
o
w

n
lo

ad
ed

 fro
m

 h
ttp

s://o
n
lin

elib
rary

.w
iley

.co
m

/d
o
i/1

0
.1

1
1
1
/cg

f.7
0
0
1
4
 b

y
 F

ried
rich

-A
lex

an
d
er U

n
iv

ersität O
f E

rlan
g
en

-N
ü
rn

b
erg

, W
iley

 O
n
lin

e L
ib

rary
 o

n
 [1

1
/0

4
/2

0
2
5
]. S

ee th
e T

erm
s an

d
 C

o
n
d
itio

n
s (h

ttp
s://o

n
lin

elib
rary

.w
iley

.co
m

/term
s-an

d
-co

n
d
itio

n
s) o

n
 W

iley
 O

n
lin

e L
ib

rary
 fo

r ru
les o

f u
se; O

A
 articles are g

o
v
ern

ed
 b

y
 th

e ap
p
licab

le C
reativ

e C
o
m

m
o
n
s L

icen
se

F. Hahlbohm et al. / Efficient Perspective-Correct 3D Gaussian Splatting Using Hybrid Transparency 7 of 12

Mip-NeRF360 [BMV∗22] (Img. Res. ≈ 1MP–1.5MP) Tanks&Temples [KPZK17] (Img. Res. ≈ 2MP)

Method SSIM↑ PSNR↑ LPIPS↓ Training Render #Splats SSIM↑ PSNR↑ LPIPS↓ Training Render #Splats

Zip-NeRF [BMV∗23] 0.828 28.56 0.219 5h 5s N/a 0.878 26.75 0.233 5h 10s N/a

3DGS [KKLD23] 0.814 27.20 0.254 18m40s 3.2ms 3.31M 0.866 25.27 0.276 20m18s 4.6ms 1.50M

StopThePop [RSP∗24] 0.814 27.30 0.252 20m11s 4.7ms 3.28M 0.866 24.99 0.270 22m03s 4.8ms 1.49M

↩→ w/ opacity decay 0.809 27.08 0.267 12m02s 2.5ms 1.71M 0.862 24.98 0.284 14m22s 3.0ms 0.81M

2DGS [HYC∗24] 0.795 26.81 0.297 21m08s 7.4ms 2.01M 0.851 24.55 0.314 28m45s 10.4ms 0.95M

Huang et al. [HBG∗24] 0.814 27.41 0.257 1h01m 10.7ms 3.30M 0.866 25.19 0.276 1h13m 15.7ms 1.49M

GOF [YSG24] 0.821 27.27 0.238 1h21m 60.0ms 2.91M 0.866 25.01 0.274 1h35m 81.3ms 1.26M

Ours 0.822 27.17 0.234 10m07s 2.2ms 2.19M 0.866 24.62 0.272 8m33s 2.6ms 0.81M

Table 1: Quantitative comparisons on the Mip-NeRF360 and Tanks and Temples datasets. Our approach of using perspectively correct splat

evaluation in combination with hybrid transparency significantly reduces training and rendering times with image quality being similar to the

baselines’. Excluding Zip-NeRF, the three best results are highlighted in green in descending order of saturation.

(GOF) [YSG24], a very recent work that uses ray tracing-based vol-

ume rendering. For all baselines, we use the official implementation

to compute the results for all 17 scenes and use the same script for

all quality metric computations. We use a single RTX 4090 for all

experiments and measure frame rate by rendering the test-set images

of each scene 100 times and averaging over the results [DHR∗24].

4.2. Implementation and Optimization

We implement our method from scratch in PyTorch and CUDA

using the implementation of Kerbl et al. [KKLD23] as a reference.

While the optimization pipeline and hyperparameters are mostly the

same as in 3DGS, we make multiple modifications to solve technical

challenges arising from our changes to the rendering pipeline. First,

we tackle aliasing problems by employing our own fast CUDA

implementation of the 3D filter proposed by Yu et al. [YCH∗24] as

our inversion-free splat evaluation prevents use of the screen-space

low-pass filter in EWA splatting [ZPvBG01a]. As the screen-space

gradients 3DGS uses for densification are not available with our splat

evaluation scheme, we follow Moenne-Loccoz et al. and instead

directly use the gradient of the splat means scaled by half the respec-

tive distance to the camera in view space [MLMP∗24]. To prevent

over-densification, we replace the opacity reset with a decay strat-

egy [RSP∗24] that multiplies splat opacity by _> = 0.9995 every 50

iterations during densification. Furthermore, we adapt the densifica-

tion changes from GOF to our approach [YSG24] and apply visibility

score-based pruning as proposed by Niemeyer et al. [NMR∗25]. As

we will show in our experiments, these changes are necessary to

adjust 3DGS’s densification strategy to work with our ray-splat

intersection-based approach. For our blending formulation, we use a

core with = 16 and employ a second threshold g = 0.05 speci-

fying the minimum U of a fragment to be considered for the core.

As the insertion sort that we employ for keeping track of per-pixel

core causes significant divergence, we reduce the tile size to 8×8

in our implementation. Lastly, we make use of an optimized SSIM

implementation [MGK∗24] to speed up loss computation.

4.3. Results

The quantitative results in Tab. 1 show that our approach pro-

vides significantly faster training and rendering. Compared to

3DGS [KKLD23], we achieve a training speedup of 2.1× and render

1.6× faster on average. The second fastest approach is StopThe-

Pop [RSP∗24] with opacity decay enabled, which benefits from a

large reduction in the number of splats. In terms of image quality, we

observe that our method achieves about equal results across the board.

However, all 3DGS-based approaches are clearly outperformed by

Zip-NeRF [BMV∗23]. Taking our contributions into consideration,

we observe that our approach outperforms approaches with perspec-

tively correct splat evaluation. Compared to 2DGS [HYC∗24], we

achieve better results across the board reassuring that 3D Gaussian

splats are more expressive than the 2D Gaussian surfels used by

2DGS. Huang et al.’s projection method [HBG∗24] significantly

slows down training and rendering while achieving image quality

similar to that of 3DGS. GOF [YSG24] achieves slightly higher

image quality but requires longer training and fails to render in

real-time. It should be noted that 2DGS and GOF were fine-tuned for

mesh extraction after optimization, which is an interesting topic but

not a focus of this work. Seeing that we achieve similar image quality

but faster training and rendering compared to either configuration

of StopThePop [RSP∗24], the results confirm that our approach is a

valid alternative to prevent popping artifacts for rasterization-based

3D Gaussian splat rendering.

We also show visual comparisons for multiple scenes in Fig. 5.

Beyond those comparisons, we often observe more accurate recon-

struction of the background when inspecting trained models. This is

likely caused by our perspectively correct splat evaluation that allows

better use of the multi-view signal provided by the training images

where the background is generally located near image borders where

perspective distortion has its highest influence.

Performance Breakdown. In Tab. 2, we compare how parts of the

rendering influence the total runtime. We denote the creation of

per-tile primitive lists (cf. Kerbl et al. [KKLD23]) as tiling and per-

tile color computations as blending. The speed of 3DGS is equally

limited by tiling and blending. StopThePop [RSP∗24] implements

significant optimizations for the tiling step in an attempt to reduce the

overhead of their hierarchical sorting during blending, which is the

main bottleneck. In contrast, we use a 16-bit unsigned integer as the

key for each Gaussian/tile instance, as we do not require any global

depth-sorting. This speeds up tiling by a similar amount as the revised

culling strategy of StopThePop. Regarding the blending step, our

hybrid transparency approach requires only partial depth-ordering

making it significantly faster than the approach of StopThePop.

© 2025 The Author(s).

Computer Graphics Forum published by Eurographics and John Wiley & Sons Ltd.

 1
4
6
7
8
6
5
9
, 0

, D
o
w

n
lo

ad
ed

 fro
m

 h
ttp

s://o
n
lin

elib
rary

.w
iley

.co
m

/d
o
i/1

0
.1

1
1
1
/cg

f.7
0
0
1
4
 b

y
 F

ried
rich

-A
lex

an
d
er U

n
iv

ersität O
f E

rlan
g
en

-N
ü
rn

b
erg

, W
iley

 O
n
lin

e L
ib

rary
 o

n
 [1

1
/0

4
/2

0
2
5
]. S

ee th
e T

erm
s an

d
 C

o
n
d
itio

n
s (h

ttp
s://o

n
lin

elib
rary

.w
iley

.co
m

/term
s-an

d
-co

n
d
itio

n
s) o

n
 W

iley
 O

n
lin

e L
ib

rary
 fo

r ru
les o

f u
se; O

A
 articles are g

o
v
ern

ed
 b

y
 th

e ap
p
licab

le C
reativ

e C
o
m

m
o
n
s L

icen
se

8 of 12 F. Hahlbohm et al. / Efficient Perspective-Correct 3D Gaussian Splatting Using Hybrid Transparency

3DGS [KKLD23] Huang et al. [HBG∗24] StopThePop [RSP∗24] 2DGS [HYC∗24] Ours Ground Truth

Figure 5: Visual comparisons of baselines that allow for real-time rendering.

Perspectively Correct Splat Evaluation. As previously discussed,

our contributions can be integrated into 3D Gaussian splatting

implementations independently. Our hybrid transparency approach

(Sec. 3.3) is mainly a method for addressing popping artifacts without

sacrificing computational efficiency. However, our perspectively

accurate splat evaluation (Sec. 3.2) should prove beneficial across a

much broader range of applications due to its accuracy. As can be

seen in Tab. 3, using it alongside the approximately depth-ordered

alpha blending from 3DGS [KKLD23] improves results for all image

quality metrics. Note that a major portion of the speed increase

over 3DGS comes from our approach providing tight screen-space

bounds for each splat. These significantly reduce the amount of

global memory accesses, sorting overhead, and the number of splats

processed during blending.

Hybrid Transparency Ablations. To analyze the behavior of our

hybrid transparency-based blending, we perform ablations on the nine

scenes from the Mip-NeRF360 dataset [BMV∗22]. The quantitative

results shown in Tab. 4 clearly indicate that = 16 is the optimal

choice for our approach. Note that rendering is slightly slower with

 = 8 as the number of splats created during optimization increases

as core size decreases.

We also show visual comparisons in Fig. 6 showing that blending

without any sorting is not a valid option as it causes the foreground to

become transparent. However, we do find that background reconstruc-

tion seems to improve in this case. With our default configuration

of = 16, omitting tail computation during inference causes a

small drop in image quality, which is most noticeable in the sky.

Importantly, not using the tail during training causes catastrophic

failure.

Densification Ablations. As described in Sec. 4.2, we make multiple

adjustments to the adaptive density control mechanism proposed by

Kerbl et al. [KKLD23]. The ablations in Tab. 4 clearly show why

this is necessary for our ray-splat intersection-based approach. Not

scaling the gradient of the splat means by half the respective distance

to the camera [MLMP∗24] results in significant under-reconstruction,

whereas dropping either the 3D filter [YCH∗24] or using the standard

opacity reset [KKLD23] every 3,000 iterations instead of an opacity

decay [RSP∗24] results in the optimization running out of memory

due to over-reconstruction. Furthermore, the visibility score-based

pruning [NMR∗25] simultaneously improves quality and speed as it

helps to prevents over-reconstruction by pruning low-opacity splats,

which would otherwise cause overfitting.

© 2025 The Author(s).

Computer Graphics Forum published by Eurographics and John Wiley & Sons Ltd.

 1
4
6
7
8
6
5
9
, 0

, D
o
w

n
lo

ad
ed

 fro
m

 h
ttp

s://o
n
lin

elib
rary

.w
iley

.co
m

/d
o
i/1

0
.1

1
1
1
/cg

f.7
0
0
1
4
 b

y
 F

ried
rich

-A
lex

an
d
er U

n
iv

ersität O
f E

rlan
g
en

-N
ü
rn

b
erg

, W
iley

 O
n
lin

e L
ib

rary
 o

n
 [1

1
/0

4
/2

0
2
5
]. S

ee th
e T

erm
s an

d
 C

o
n
d
itio

n
s (h

ttp
s://o

n
lin

elib
rary

.w
iley

.co
m

/term
s-an

d
-co

n
d
itio

n
s) o

n
 W

iley
 O

n
lin

e L
ib

rary
 fo

r ru
les o

f u
se; O

A
 articles are g

o
v
ern

ed
 b

y
 th

e ap
p
licab

le C
reativ

e C
o
m

m
o
n
s L

icen
se

F. Hahlbohm et al. / Efficient Perspective-Correct 3D Gaussian Splatting Using Hybrid Transparency 9 of 12

Method Preprocess Tiling Blending Total #Splats

Bicycle [BMV∗22]

3DGS [KKLD23] 1.099 3.494 3.422 8.015 6.03M

StopThePop [RSP∗24] 1.364 1.358 5.116 7.838 6.05M

↩→ w/ opacity decay 0.554 0.547 2.442 3.543 2.91M

2DGS [HYC∗24] 0.674 1.909 5.267 7.850 3.99M

Ours 0.556 0.754 2.007 3.317 4.35M

Francis [KPZK17]

3DGS [KKLD23] 0.235 2.078 1.644 3.957 0.81M

StopThePop [RSP∗24] 0.268 0.423 2.869 3.560 0.82M

↩→ w/ opacity decay 0.154 0.310 1.980 2.444 0.45M

2DGS [HYC∗24] 0.177 4.397 8.700 13.27 0.51M

Ours 0.107 0.678 1.228 2.013 0.44M

Table 2: Breakdown of render timings in milliseconds at a resolution

of 1920×1080 pixels measured on an RTX 4090 GPU. We select the

scenes where the trained 3DGS model contains the highest (Bicycle)

and lowest (Francis) number of splats across all tested scenes. For

each method, we repeatedly render all test-set views and average

measurements obtained via NVIDIA Nsight Systems across 100 runs.

Method SSIM↑ PSNR↑ LPIPS↓ Training Render

3DGS 0.730 24.64 0.265 21m17s 3.41ms

Ours 0.742 24.62 0.237 12m09s 2.08ms

Ours w/o per-pixel HT 0.748 24.81 0.230 17m26s 2.23ms

Table 3: We showcase the potential of our perspectively correct

splat evaluation by omitting our hybrid transparency-based blending

in favor of the approximately depth-ordered alpha blending from

3DGS [KKLD23]. As it forgoes per-pixel ordering, this version of our

model is subject to popping artifacts, and it is slightly less efficient

than our default configuration, but outperforms 3DGS across all

metrics. The reported values are averaged results for the five outdoor

scenes from the Mip-NeRF360 dataset [BMV∗22].

5. Discussion

The experiments validate that our approach improves robustness

and accuracy of the optimization due to our perspective-accurate

and numerically stable splat evaluation. Similarly, they show that

hybrid transparency can effectively be integrated into differentiable

rasterizers for 3D Gaussian splats to accelerate training and ren-

dering without sacrificing image quality. Importantly, both of our

contributions improve the rendering quality beyond what shows in

the quantitative results for standardized benchmarks. To address this,

our supplemental includes two videos that clearly demonstrate the

advantage of our two-part contribution, which we encourage the

reader to view. The perspectively correct splat evaluation allows

our rendering to avoid artifacts that arise from the approximate

projection used in 3DGS [KKLD23]. We find that the commonly

used benchmark datasets largely fail to reveal this artifact making

it invisible in quantitative evaluation. However, when inspecting

trained 3D Gaussian splat models in a real-time viewer, it is very

easy to find scenarios where the perspectively inaccurate projection

causes disturbing artifacts.

Configuration SSIM↑ PSNR↑ LPIPS↓ Training Render #Splats

Hybrid Transparency

 = 8 0.811 26.70 0.245 10m02s 2.28ms 2.45M

 = 32 0.821 27.12 0.236 31m11s 2.67ms 2.10M

Ours (= 16) 0.822 27.17 0.234 10m07s 2.19ms 2.19M

Inference w/o tail 0.817 26.92 0.240 10m07s 2.14ms 2.19M

Densification

No 3D filter† 0.777 25.58 0.303 1m44s 2.24ms 3.65M

No opacity decay† 0.784 25.92 0.292 2m42s 3.81ms 4.35M

No scaled grads 0.784 26.30 0.317 4m05s 1.35ms 0.30M

No vis. pruning 0.820 26.96 0.235 12m17s 2.34ms 2.42M

Ours-7K 0.780 25.72 0.299 1m45s 2.10ms 2.09M

Ours 0.822 27.17 0.234 10m07s 2.19ms 2.19M

Table 4: Ablations for our hybrid transparency approach and our

adaptation of the densification strategy from 3DGS [KKLD23] com-

puted on the nine scenes from the Mip-NeRF360 dataset [BMV∗22].

Configurations marked with † are only trained for 7,000 iterations

as the optimization would otherwise run out of memory due to

over-densification.

Equally as noticeable are the popping artifacts caused by the

approximate depth-ordering in 3DGS. StopThePop [RSP∗24] uses a

hierarchical sorting approach to resolve this issue. They sort splats

globally based on their means [KKLD23] and then use a sliding

window approach to sort the per-tile lists approximately. In contrast,

our approach guarantees correct sorting order for the first elements

in each pixel and then uses fast blending without sorting for the rest.

Our results show that this strategy results in a good tradeoff between

quality and performance: The correct sorting of the front-most

fragments leads to high rendering quality and temporal stability,

with little impact on performance. While the remaining elements

from the tail are essential for robust optimization as demonstrated in

Fig. 6, our results show that the much cheaper unsorted blending is

sufficient to maintain high performance, very good rendering quality,

and robust optimization.

The artifacts addressed by our approach are most apparent while

the camera is moving (see our supplemental videos), which is an issue

for VR/AR applications or fast-paced games where the user rarely

keeps their head or the camera perfectly still. As VR also requires high

frame rates to mitigate cybersickness and view-consistent peripheral

rendering to avoid breaking immersion [FFS24], we believe that the

combined advantages of our approach – fast, perspective-correct

rendering without popping artifacts – make it a great fit for such

applications. Another area where we think our approach could prove

beneficial are 3DGS implementations for low-end devices, which

currently require expensive CPU sorting. As our approach naturally

supports depth peeling due to the fixed size of the core, it should

be possible to implement a hardware-accelerated viewer for our

approach that does not require a dedicated sorting routine.

Regarding reconstruction and image quality, we observe that

the adaptive density control mechanism by Kerbl et al. [KKLD23]

introduced for 3DGS has a significant influence while being very

sensitive to changes. As outlined in Sec. 4.2, approaches evaluating

splats along per-pixel viewing rays do not naturally provide the

© 2025 The Author(s).

Computer Graphics Forum published by Eurographics and John Wiley & Sons Ltd.

 1
4
6
7
8
6
5
9
, 0

, D
o
w

n
lo

ad
ed

 fro
m

 h
ttp

s://o
n
lin

elib
rary

.w
iley

.co
m

/d
o
i/1

0
.1

1
1
1
/cg

f.7
0
0
1
4
 b

y
 F

ried
rich

-A
lex

an
d
er U

n
iv

ersität O
f E

rlan
g
en

-N
ü
rn

b
erg

, W
iley

 O
n
lin

e L
ib

rary
 o

n
 [1

1
/0

4
/2

0
2
5
]. S

ee th
e T

erm
s an

d
 C

o
n
d
itio

n
s (h

ttp
s://o

n
lin

elib
rary

.w
iley

.co
m

/term
s-an

d
-co

n
d
itio

n
s) o

n
 W

iley
 O

n
lin

e L
ib

rary
 fo

r ru
les o

f u
se; O

A
 articles are g

o
v
ern

ed
 b

y
 th

e ap
p
licab

le C
reativ

e C
o
m

m
o
n
s L

icen
se

10 of 12 F. Hahlbohm et al. / Efficient Perspective-Correct 3D Gaussian Splatting Using Hybrid Transparency

 = 0 = 8 Ours Ours Render w/o Tail Train w/o Tail

Figure 6: Visual comparisons for different model configurations regarding our hybrid transparency approach. Using a smaller core size

causes issues for reflective surfaces, as radiance fields commonly model these using semi-transparency. Disabling the order-independent tail

only slightly reduces quality, especially in the sky, whereas not using it during optimization results in catastrophic failure.

information used by the densification approach of 3DGS, i.e., the

gradient of the splat’s position in view-space. After experimenting

with the solutions presented in recent works [KRS∗24, HYC∗24,

MLMP∗24], we find scaling the gradients of the 3D positions by

half the distance to the camera [MLMP∗24] works best for our

approach. Nonetheless, we find that the direct connection between

local splat attributes and the global densification scheme introduces

issues regarding the robustness of all 3DGS-based approaches we

investigated. Additional challenges, such as the photometric variation

in images from the Tanks and Temples dataset [KPZK17] further

amplify this issue.

Limitations and Future Work. Naturally, our approach is not

without limitations. While sole use of alpha blending allows for early

stopping based on a preset transmittance threshold [KKLD23], this

is not an option for hybrid transparency by default. In our current

implementation, we accumulate the RGB color and alpha of all

per-pixel contributions that are not part of the core. Intuitively, this

is a problem when scenes become larger due to the increase in depth

complexity. However, we are confident that this issue can be resolved,

e.g., by combining a depth prepass with a depth-weighting function

as in WBOIT [MB13]. Additionally, we find that our approach

achieves slightly lower PSNR than that of 3DGS, which we think is

due to the absence of a screen-space aliasing filter or multi-sampling

approach. As suggested by Huang et al. [HYC∗24], we tried using the

approach of Botsch et al. [BHZK05], but did not find it beneficial. We

think it is possible to extend our splat evaluation to efficiently handle

lens distortion thus enabling training on images without applying

lossy undistortion operations during data pre-processing. Lastly,

we would like to highlight that our hybrid transparency approach

unveils an avenue for integrating otherwise too expensive ideas into

real-time rendering of 3D Gaussians splats. While correct volume

rendering of all contributing splats is not computationally feasible, it

should be possible for the first = 16 Gaussians. Similarly, we think

that the fixed size of the core in our hybrid transparency approach

allows the use of more powerful appearance models [DHR∗24] to

improve image quality.

6. Conclusion

In this paper, we addressed two significant challenges prevalent in

3D Gaussian splat rendering. First, we introduced a novel approach

for fast and perspective-accurate splat evaluation, which eliminates

artifacts that arise from the affine approximation used by current

3D Gaussian Splatting implementations. Our approach elegantly

avoids matrix inversion thus ensuring robust optimization and ac-

curate rendering without numerical instabilities, even when splats

degenerate. Second, we proposed an approach for view-consistent

rendering through hybrid transparency, which uses fast, approximate

per-pixel depth sorting that guarantees correct order for the first

contributions and thus prevents popping artifacts. Importantly, these

improvements have a largely positive impact on performance, as

evidenced by our analysis of training time, rendering speed, image

quality metrics, and visual fidelity. We believe our two-part contri-

bution can both independently and jointly improve accuracy and

efficiency of 3D Gaussian splat rendering in the future.

https://fhahlbohm.github.io/htgs/

Acknowledgments

We thank Timon Scholz and Carlotta Harms for their help with

comparisons and supplemental material. This work was partially

funded by the DFG – projects “Real-Action VR” (ID 523421583) and

“Increasing Realism of Omnidirectional Videos in Virtual Reality”

(ID 491805996) – as well as the L3S Research Center, Hanover,

Germany. Linus Franke was supported by the 5G innovation program

of the German Federal Ministry for Digital and Transport under

the funding code 165GU103B. Open Access funding enabled and

organized by Projekt DEAL.

References

[ASK∗20] Aliev K.-A., Sevastopolsky A., Kolos M., Ulyanov D., Lem-

pitsky V.: Neural point-based graphics. In Eur. Conf. Comput. Vis. (2020),
Springer-Verlag, pp. 696–712. doi:10.1007/978-3-030-58542-6_
42. 3

[BCL∗07] Bavoil L., Callahan S. P., Lefohn A., Comba J. a. L. D., Silva

C. T.: Multi-fragment effects on the gpu using the k-buffer. In Proc. ACM

SIGGRAPH Symp. Interact. 3D Graph. Games (2007), Association for
Computing Machinery, pp. 97–104. doi:10.1145/1230100.1230117.
4

[BHZK05] Botsch M., Hornung A., Zwicker M., Kobbelt L.: High-
quality surface splatting on today’s gpus. In Proc. Eurographics/IEEE

VGTC Symposium Point-Based Graphics (2005), IEEE, pp. 17–141. doi:
10.1109/PBG.2005.194059. 3, 10

[BKL∗24] Bagdasarian M. T., Knoll P., Li Y.-H., Barthel F., Hilsmann

A., Eisert P., Morgenstern W.: 3DGS.zip: A survey on 3D Gaussian
splatting compression methods, 2024. arXiv:2407.09510. 3

© 2025 The Author(s).

Computer Graphics Forum published by Eurographics and John Wiley & Sons Ltd.

 1
4
6
7
8
6
5
9
, 0

, D
o
w

n
lo

ad
ed

 fro
m

 h
ttp

s://o
n
lin

elib
rary

.w
iley

.co
m

/d
o
i/1

0
.1

1
1
1
/cg

f.7
0
0
1
4
 b

y
 F

ried
rich

-A
lex

an
d
er U

n
iv

ersität O
f E

rlan
g
en

-N
ü
rn

b
erg

, W
iley

 O
n
lin

e L
ib

rary
 o

n
 [1

1
/0

4
/2

0
2
5
]. S

ee th
e T

erm
s an

d
 C

o
n
d
itio

n
s (h

ttp
s://o

n
lin

elib
rary

.w
iley

.co
m

/term
s-an

d
-co

n
d
itio

n
s) o

n
 W

iley
 O

n
lin

e L
ib

rary
 fo

r ru
les o

f u
se; O

A
 articles are g

o
v
ern

ed
 b

y
 th

e ap
p
licab

le C
reativ

e C
o
m

m
o
n
s L

icen
se

https://fhahlbohm.github.io/htgs/
https://doi.org/10.1007/978-3-030-58542-6_42
https://doi.org/10.1007/978-3-030-58542-6_42
https://doi.org/10.1145/1230100.1230117
https://doi.org/10.1109/PBG.2005.194059
https://doi.org/10.1109/PBG.2005.194059
http://arxiv.org/abs/2407.09510

F. Hahlbohm et al. / Efficient Perspective-Correct 3D Gaussian Splatting Using Hybrid Transparency 11 of 12

[BM08] Bavoil L., Myers K.: Order independent transparency with dual
depth peeling. NVIDIA OpenGL SDK 1, 12 (2008), 2–4. 4

[BMT∗21] Barron J. T., Mildenhall B., Tancik M., Hedman P., Martin-

Brualla R., Srinivasan P. P.: Mip-NeRF: A multiscale representation
for anti-aliasing neural radiance fields. In Int. Conf. Comput. Vis. (2021),
pp. 5835–5844. doi:10.1109/ICCV48922.2021.00580. 3

[BMV∗22] Barron J. T., Mildenhall B., Verbin D., Srinivasan P. P.,

Hedman P.: Mip-NeRF 360: Unbounded anti-aliased neural radiance fields.
In IEEE/CVF Conf. Comput. Vis. Pattern Recog. (2022), pp. 5460–5469.
doi:10.1109/CVPR52688.2022.00539. 3, 6, 7, 8, 9

[BMV∗23] Barron J. T., Mildenhall B., Verbin D., Srinivasan P. P.,

Hedman P.: Zip-NeRF: Anti-aliased grid-based neural radiance fields.
In Int. Conf. Comput. Vis. (2023), pp. 19640–19648. doi:10.1109/
ICCV51070.2023.01804. 3, 7

[Car84] Carpenter L.: The A-buffer, an antialiased hidden surface method.
In SIGGRAPH (1984), Association for Computing Machinery, pp. 103–
108. doi:10.1145/800031.808585. 4

[CFHT23] Chen Z., Funkhouser T., Hedman P., Tagliasacchi A.:
MobileNeRF: Exploiting the polygon rasterization pipeline for effi-
cient neural field rendering on mobile architectures. In IEEE/CVF

Conf. Comput. Vis. Pattern Recog. (2023), pp. 16569–16578. doi:
10.1109/CVPR52729.2023.01590. 3

[CXG∗22] Chen A., Xu Z., Geiger A., Yu J., Su H.: TensoRF: Tensorial
radiance fields. In Eur. Conf. Comput. Vis. (2022), Springer-Verlag,
pp. 333–350. doi:10.1007/978-3-031-19824-3_20. 3

[DHR∗24] Duckworth D., Hedman P., Reiser C., Zhizhin P., Thibert

J.-F., Lučić M., Szeliski R., Barron J. T.: SMERF: Streamable memory
efficient radiance fields for real-time large-scene exploration. ACM Trans.

Graph. 43, 4 (2024). doi:10.1145/3658193. 3, 7, 10

[ESSL10] Enderton E., Sintorn E., Shirley P., Luebke D.: Stochastic
transparency. In Proc. ACM SIGGRAPH Symp. Interact. 3D Graph.

Games (2010), Association for Computing Machinery, pp. 157–164.
doi:10.1145/1730804.1730830. 4

[Eve01] Everitt C.: Interactive order-independent transparency. NVIDIA

OpenGL Applications Engineering 2, 6 (2001), 7. 4

[FEE21] Friederichs F., Eisemann E., Eisemann M.: Layered weighted
blended order-independent transparency. In Proc. Graphics Interface (5
2021), pp. 1–6. 4

[FFS24] Franke L., Fink L., Stamminger M.: VR-Splatting: Foveated
radiance field rendering via 3D Gaussian splatting and neural points. arXiv

preprint arXiv:2410.17932 (2024). 9

[FKYT∗22] Fridovich-Keil S., Yu A., Tancik M., Chen Q., Recht B.,

Kanazawa A.: Plenoxels: Radiance fields without neural networks. In
IEEE/CVF Conf. Comput. Vis. Pattern Recog. (2022), pp. 5491–5500.
doi:10.1109/CVPR52688.2022.00542. 3

[FRF∗23] Franke L., Rückert D., Fink L., Innmann M., Stamminger

M.: VET: Visual error tomography for point cloud completion and
high-quality neural rendering. In SIGGRAPH Asia Conference Papers

(2023), Association for Computing Machinery. doi:10.1145/3610548.
3618212. 3

[FRFS24] Franke L., Rückert D., Fink L., Stamminger M.: TRIPS:
Trilinear point splatting for real-time radiance field rendering. Comput.

Graph. Forum 43, 2 (2024). doi:10.1111/cgf.15012. 3, 6

[GD98] Grossman J. P., Dally W. J.: Point sample rendering. In Rendering

Techniques: Proc. of the Eurographics Workshop (1998), Springer, pp. 181–
192. 3

[HBG∗24] Huang L., Bai J., Guo J., Li Y., Guo Y.: On the error analysis
of 3D Gaussian splatting and an optimal projection strategy. In Eur.

Conf. Comput. Vis. (2024), Springer-Verlag, pp. 247–263. doi:10.1007/
978-3-031-72643-9_15. 4, 6, 7, 8

[HFF∗23] Harrer M., Franke L., Fink L., Stamminger M., Weyrich

T.: Inovis: Instant novel-view synthesis. In SIGGRAPH Asia Conference

Papers (2023), Association for Computing Machinery. doi:10.1145/
3610548.3618216. 3

[HFK∗25] Hahlbohm F., Franke L., Kappel M., Castillo S., Eisemann

M., Stamminger M., Magnor M.: INPC: Implicit neural point clouds
for radiance field rendering. In International Conference on 3D Vision

(2025). 3

[HSM∗21] Hedman P., Srinivasan P. P., Mildenhall B., Barron

J. T., Debevec P.: Baking neural radiance fields for real-time view
synthesis. In Int. Conf. Comput. Vis. (2021), pp. 5855–5864. doi:
10.1109/ICCV48922.2021.00582. 3

[HYC∗24] Huang B., Yu Z., Chen A., Geiger A., Gao S.: 2D Gaussian
splatting for geometrically accurate radiance fields. In SIGGRAPH

(2024), Association for Computing Machinery. doi:10.1145/3641519.
3657428. 1, 2, 3, 4, 6, 7, 8, 9, 10

[KKLD23] Kerbl B., Kopanas G., Leimkuehler T., Drettakis G.: 3D
Gaussian splatting for real-time radiance field rendering. ACM Trans.

Graph. 42, 4 (2023). doi:10.1145/3592433. 1, 2, 3, 4, 6, 7, 8, 9, 10

[KLR∗22] Kopanas G., Leimkühler T., Rainer G., Jambon C., Dret-

takis G.: Neural point catacaustics for novel-view synthesis of reflections.
ACM Trans. Graph. 41, 6 (2022). doi:10.1145/3550454.3555497. 3

[KMK∗24] Kerbl B., Meuleman A., Kopanas G., Wimmer M., Lanvin

A., Drettakis G.: A hierarchical 3D Gaussian representation for real-
time rendering of very large datasets. ACM Trans. Graph. 43, 4 (2024).
doi:10.1145/3658160. 3

[KPLD21] Kopanas G., Philip J., Leimkühler T., Drettakis G.: Point-
based neural rendering with per-view optimization. Comput. Graph.

Forum 40, 4 (2021), 29–43. doi:10.1111/cgf.14339. 3

[KPZK17] Knapitsch A., Park J., Zhou Q.-Y., Koltun V.: Tanks and
Temples: Benchmarking large-scale scene reconstruction. ACM Trans.

Graph. 36, 4 (2017). doi:10.1145/3072959.3073599. 6, 7, 9, 10

[KRS∗24] Kheradmand S., Rebain D., Sharma G., Sun W., Tseng Y.-C.,

Isack H., Kar A., Tagliasacchi A., Yi K. M.: 3D Gaussian splatting as
Markov chain monte carlo. In Adv. Neural Inform. Process. Syst. (2024).
3, 10

[KS23] Kulhanek J., Sattler T.: Tetra-NeRF: Representing neural
radiance fields using tetrahedra. In Int. Conf. Comput. Vis. (2023),
pp. 18412–18423. doi:10.1109/ICCV51070.2023.01692. 3

[LKLR24] Luiten J., Kopanas G., Leibe B., Ramanan D.: Dynamic 3D
Gaussians: Tracking by persistent dynamic view synthesis. In International

Conference on 3D Vision (2024), pp. 800–809. doi:10.1109/3DV62453.
2024.00044. 3

[LZ21] Lassner C., Zollhöfer M.: Pulsar: Efficient sphere-based neural
rendering. In IEEE/CVF Conf. Comput. Vis. Pattern Recog. (2021),
pp. 1440–1449. doi:10.1109/CVPR46437.2021.00149. 3, 6

[MB13] McGuire M., Bavoil L.: Weighted blended order-independent
transparency. Journal of Computer Graphics Techniques 2, 2 (2013),
122–141. 4, 10

[MBDM97] Montrym J. S., Baum D. R., Dignam D. L., Migdal C. J.:
InfiniteReality: a real-time graphics system. In SIGGRAPH (1997), ACM
Press, pp. 293–302. doi:10.1145/258734.258871. 6

[MCTB13] Maule M., Comba J., Torchelsen R., Bastos R.: Hybrid
transparency. In Proc. ACM SIGGRAPH Symp. Interact. 3D Graph.

Games (2013), pp. 103–118. doi:10.1145/2448196.2448212. 4, 6

[Mes07] Meshkin H.: Sort-independent alpha blending. GDC Talk (2007).
4

[MESK22] Müller T., Evans A., Schied C., Keller A.: Instant neural
graphics primitives with a multiresolution hash encoding. ACM Trans.

Graph. 41, 4 (2022). doi:10.1145/3528223.3530127. 3

[MGK∗24] Mallick S. S., Goel R., Kerbl B., Steinberger M., Car-

rasco F. V., De La Torre F.: Taming 3DGS: High-quality radiance fields
with limited resources. In SIGGRAPH Asia Conference Papers (2024), As-
sociation for Computing Machinery. doi:10.1145/3680528.3687694.
7

[MKKP18] Münstermann C., Krumpen S., Klein R., Peters C.:
Moment-based order-independent transparency. Proc. ACM Comput.

Graph. Interact. Tech. 1, 1 (2018). doi:10.1145/3203206. 4

© 2025 The Author(s).

Computer Graphics Forum published by Eurographics and John Wiley & Sons Ltd.

 1
4
6
7
8
6
5
9
, 0

, D
o
w

n
lo

ad
ed

 fro
m

 h
ttp

s://o
n
lin

elib
rary

.w
iley

.co
m

/d
o
i/1

0
.1

1
1
1
/cg

f.7
0
0
1
4
 b

y
 F

ried
rich

-A
lex

an
d
er U

n
iv

ersität O
f E

rlan
g
en

-N
ü
rn

b
erg

, W
iley

 O
n
lin

e L
ib

rary
 o

n
 [1

1
/0

4
/2

0
2
5
]. S

ee th
e T

erm
s an

d
 C

o
n
d
itio

n
s (h

ttp
s://o

n
lin

elib
rary

.w
iley

.co
m

/term
s-an

d
-co

n
d
itio

n
s) o

n
 W

iley
 O

n
lin

e L
ib

rary
 fo

r ru
les o

f u
se; O

A
 articles are g

o
v
ern

ed
 b

y
 th

e ap
p
licab

le C
reativ

e C
o
m

m
o
n
s L

icen
se

https://doi.org/10.1109/ICCV48922.2021.00580
https://doi.org/10.1109/CVPR52688.2022.00539
https://doi.org/10.1109/ICCV51070.2023.01804
https://doi.org/10.1109/ICCV51070.2023.01804
https://doi.org/10.1145/800031.808585
https://doi.org/10.1109/CVPR52729.2023.01590
https://doi.org/10.1109/CVPR52729.2023.01590
https://doi.org/10.1007/978-3-031-19824-3_20
https://doi.org/10.1145/3658193
https://doi.org/10.1145/1730804.1730830
https://doi.org/10.1109/CVPR52688.2022.00542
https://doi.org/10.1145/3610548.3618212
https://doi.org/10.1145/3610548.3618212
https://doi.org/10.1111/cgf.15012
https://doi.org/10.1007/978-3-031-72643-9_15
https://doi.org/10.1007/978-3-031-72643-9_15
https://doi.org/10.1145/3610548.3618216
https://doi.org/10.1145/3610548.3618216
https://doi.org/10.1109/ICCV48922.2021.00582
https://doi.org/10.1109/ICCV48922.2021.00582
https://doi.org/10.1145/3641519.3657428
https://doi.org/10.1145/3641519.3657428
https://doi.org/10.1145/3592433
https://doi.org/10.1145/3550454.3555497
https://doi.org/10.1145/3658160
https://doi.org/10.1111/cgf.14339
https://doi.org/10.1145/3072959.3073599
https://doi.org/10.1109/ICCV51070.2023.01692
https://doi.org/10.1109/3DV62453.2024.00044
https://doi.org/10.1109/3DV62453.2024.00044
https://doi.org/10.1109/CVPR46437.2021.00149
https://doi.org/10.1145/258734.258871
https://doi.org/10.1145/2448196.2448212
https://doi.org/10.1145/3528223.3530127
https://doi.org/10.1145/3680528.3687694
https://doi.org/10.1145/3203206

12 of 12 F. Hahlbohm et al. / Efficient Perspective-Correct 3D Gaussian Splatting Using Hybrid Transparency

[MLMP∗24] Moenne-Loccoz N., Mirzaei A., Perel O., de Lutio R.,

Martinez Esturo J., State G., Fidler S., Sharp N., Gojcic Z.: 3D
Gaussian Ray Tracing: Fast tracing of particle scenes. ACM Trans. Graph.

43, 6 (2024). doi:10.1145/3687934. 2, 3, 6, 7, 8, 10

[MST∗20] Mildenhall B., Srinivasan P. P., Tancik M., Barron J. T., Ra-

mamoorthi R., Ng R.: NeRF: Representing scenes as neural radiance fields
for view synthesis. In Eur. Conf. Comput. Vis. (2020), Springer Interna-
tional Publishing, pp. 405–421. doi:10.1007/978-3-030-58452-8_
24. 2, 3

[NMR∗25] Niemeyer M., Manhardt F., Rakotosaona M.-J., Oechsle

M., Duckworth D., Gosula R., Tateno K., Bates J., Kaeser D.,

Tombari F.: RadSplat: Radiance field-informed Gaussian splatting for
robust real-time rendering with 900+ fps. In International Conference on

3D Vision (2025). 3, 7, 8

[PD84] Porter T., Duff T.: Compositing digital images. SIGGRAPH 18,
3 (1984), 253–259. doi:10.1145/964965.808606. 4

[PZvBG00] Pfister H., Zwicker M., van Baar J., Gross M.: Surfels:
surface elements as rendering primitives. In SIGGRAPH (2000), ACM
Press, pp. 335–342. doi:10.1145/344779.344936. 3

[RFS22] Rückert D., Franke L., Stamminger M.: ADOP: Approximate
differentiable one-pixel point rendering. ACM Trans. Graph. 41, 4 (2022).
doi:10.1145/3528223.3530122. 3

[RGS∗24] Reiser C., Garbin S., Srinivasan P., Verbin D., Szeliski R.,

Mildenhall B., Barron J., Hedman P., Geiger A.: Binary Opacity
Grids: Capturing fine geometric detail for mesh-based view synthesis.
ACM Trans. Graph. 43, 4 (2024). doi:10.1145/3658130. 3

[RL00] Rusinkiewicz S., Levoy M.: QSplat: a multiresolution point
rendering system for large meshes. In SIGGRAPH (2000), ACM Press,
pp. 343–352. doi:10.1145/344779.344940. 3

[RSP∗24] Radl L., Steiner M., Parger M., Weinrauch A., Kerbl

B., Steinberger M.: StopThePop: Sorted Gaussian splatting for view-
consistent real-time rendering. ACM Trans. Graph. 43, 4 (2024). doi:
10.1145/3658187. 1, 2, 3, 5, 6, 7, 8, 9

[RSV∗23] Reiser C., Szeliski R., Verbin D., Srinivasan P., Mildenhall

B., Geiger A., Barron J., Hedman P.: MERF: Memory-efficient radiance
fields for real-time view synthesis in unbounded scenes. ACM Trans.

Graph. 42, 4 (2023). doi:10.1145/3592426. 3

[SML11] Salvi M., Montgomery J., Lefohn A.: Adaptive transparency.
In Proc. of the ACM SIGGRAPH Symposium on High Performance

Graphics (2011), Association for Computing Machinery, pp. 119–126.
doi:10.1145/2018323.2018342. 4

[SSC22] Sun C., Sun M., Chen H.: Direct Voxel Grid Optimization:
Super-fast convergence for radiance fields reconstruction. In IEEE/CVF

Conf. Comput. Vis. Pattern Recog. (2022), pp. 5449–5459. doi:10.
1109/CVPR52688.2022.00538. 3

[SV14] Salvi M., Vaidyanathan K.: Multi-layer alpha blending. In Proc.

ACM SIGGRAPH Symp. Interact. 3D Graph. Games (2014), Associa-
tion for Computing Machinery, pp. 151–158. doi:10.1145/2556700.
2556705. 4

[SWBG06] Sigg C., Weyrich T., Botsch M., Gross M.: Gpu-based
ray-casting of quadratic surfaces. In Proc. Eurographics/IEEE VGTC

Symposium Point-Based Graphics (2006), Eurographics Association,
pp. 59–65. doi:10.2312/SPBG/SPBG06/059-065. 2, 3, 4, 5

[WHA∗07] Weyrich T., Heinzle S., Aila T., Fasnacht D. B., Oetiker

S., Botsch M., Flaig C., Mall S., Rohrer K., Felber N., Kaeslin H.,

Gross M.: A hardware architecture for surface splatting. ACM Trans.

Graph. 26, 3 (2007), 90–es. doi:10.1145/1276377.1276490. 2, 3, 4,
5

[WYF∗24] Wu G., Yi T., Fang J., Xie L., Zhang X., Wei W., Liu W.,

Tian Q., Wang X.: 4D Gaussian splatting for real-time dynamic scene
rendering. In IEEE/CVF Conf. Comput. Vis. Pattern Recog. (2024),
pp. 20310–20320. doi:10.1109/CVPR52733.2024.01920. 3

[Wym16] Wyman C.: Exploring and expanding the continuum of OIT
algorithms. In Proc. of High Performance Graphics (2016), Eurographics
Association, pp. 1–11. doi:10.5555/2977336.2977338. 2, 4

[YCH∗24] Yu Z., Chen A., Huang B., Sattler T., Geiger A.: Mip-
Splatting: Alias-free 3D Gaussian splatting. In IEEE/CVF Conf. Comput.

Vis. Pattern Recog. (2024), pp. 19447–19456. doi:10.1109/CVPR52733.
2024.01839. 3, 7, 8

[YHR∗23] Yariv L., Hedman P., Reiser C., Verbin D., Srinivasan P. P.,

Szeliski R., Barron J. T., Mildenhall B.: BakedSDF: Meshing neural
SDFs for real-time view synthesis. In ACM SIGGRAPH Conference

Papers (2023), Association for Computing Machinery. doi:10.1145/
3588432.3591536. 3

[YLT∗21] Yu A., Li R., Tancik M., Li H., Ng R., Kanazawa A.: PlenOc-
trees for real-time rendering of neural radiance fields. In Int. Conf. Comput.

Vis. (2021), pp. 5732–5741. doi:10.1109/ICCV48922.2021.00570.
3

[YSG24] Yu Z., Sattler T., Geiger A.: Gaussian Opacity Fields: Efficient
adaptive surface reconstruction in unbounded scenes. ACM Trans. Graph.

43, 6 (2024). doi:10.1145/3687937. 2, 3, 6, 7

[ZPvBG01a] Zwicker M., Pfister H., van Baar J., Gross M.: EWA
volume splatting. In Proc. of the Conference on Visualization (2001),
IEEE Computer Society, pp. 29–36. doi:10.5555/601671.601674. 4,
7

[ZPvBG01b] Zwicker M., Pfister H., van Baar J., Gross M.: Surface
splatting. In SIGGRAPH (2001), Association for Computing Machinery,
pp. 371–378. doi:10.1145/383259.383300. 3

© 2025 The Author(s).

Computer Graphics Forum published by Eurographics and John Wiley & Sons Ltd.

 1
4
6
7
8
6
5
9
, 0

, D
o
w

n
lo

ad
ed

 fro
m

 h
ttp

s://o
n
lin

elib
rary

.w
iley

.co
m

/d
o
i/1

0
.1

1
1
1
/cg

f.7
0
0
1
4
 b

y
 F

ried
rich

-A
lex

an
d
er U

n
iv

ersität O
f E

rlan
g
en

-N
ü
rn

b
erg

, W
iley

 O
n
lin

e L
ib

rary
 o

n
 [1

1
/0

4
/2

0
2
5
]. S

ee th
e T

erm
s an

d
 C

o
n
d
itio

n
s (h

ttp
s://o

n
lin

elib
rary

.w
iley

.co
m

/term
s-an

d
-co

n
d
itio

n
s) o

n
 W

iley
 O

n
lin

e L
ib

rary
 fo

r ru
les o

f u
se; O

A
 articles are g

o
v
ern

ed
 b

y
 th

e ap
p
licab

le C
reativ

e C
o
m

m
o
n
s L

icen
se

https://doi.org/10.1145/3687934
https://doi.org/10.1007/978-3-030-58452-8_24
https://doi.org/10.1007/978-3-030-58452-8_24
https://doi.org/10.1145/964965.808606
https://doi.org/10.1145/344779.344936
https://doi.org/10.1145/3528223.3530122
https://doi.org/10.1145/3658130
https://doi.org/10.1145/344779.344940
https://doi.org/10.1145/3658187
https://doi.org/10.1145/3658187
https://doi.org/10.1145/3592426
https://doi.org/10.1145/2018323.2018342
https://doi.org/10.1109/CVPR52688.2022.00538
https://doi.org/10.1109/CVPR52688.2022.00538
https://doi.org/10.1145/2556700.2556705
https://doi.org/10.1145/2556700.2556705
https://doi.org/10.2312/SPBG/SPBG06/059-065
https://doi.org/10.1145/1276377.1276490
https://doi.org/10.1109/CVPR52733.2024.01920
https://doi.org/10.5555/2977336.2977338
https://doi.org/10.1109/CVPR52733.2024.01839
https://doi.org/10.1109/CVPR52733.2024.01839
https://doi.org/10.1145/3588432.3591536
https://doi.org/10.1145/3588432.3591536
https://doi.org/10.1109/ICCV48922.2021.00570
https://doi.org/10.1145/3687937
https://doi.org/10.5555/601671.601674
https://doi.org/10.1145/383259.383300

