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Figure 1: We present Lite2Relight, a method that can relight monocular portrait images given HDRI environment maps. Our

method demonstrates strong generalization to in-the-wild images, maintains 3D consistent pose synthesis of the subjects and

performs physically accurate relighting. Moreover, courtesy of our lightweight architecture, Lite2Relight can relight subjects

captured by a live webcam at interactive rates. Image credits to Flickr.
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ABSTRACT

Achieving photorealistic 3D view synthesis and relighting of hu-

man portraits is pivotal for advancing AR/VR applications. Existing

© 2024 Copyright held by the owner/author(s).
ACM ISBN 979-8-4007-0525-0/24/07
https://doi.org/10.1145/3641519.3657470

https://orcid.org/0009-0003-7236-169X
https://orcid.org/0009-0002-3471-7715
https://orcid.org/0000-0001-7906-4004
https://orcid.org/0009-0007-5906-8666
https://orcid.org/0000-0003-1502-6847
https://orcid.org/0000-0002-4322-8844
https://orcid.org/0000-0001-6511-9385
https://orcid.org/0000-0002-3620-2582
https://orcid.org/0000-0003-0212-5643
https://orcid.org/0000-0001-8727-0895
https://orcid.org/0000-0001-6104-6625
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1145/3641519.3657470
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3641519.3657470&domain=pdf&date_stamp=2024-07-13


SIGGRAPH Conference Papers ’24, July 27–August 01, 2024, Denver, CO, USA Rao et al.

methodologies in portrait relighting demonstrate substantial limi-

tations in terms of generalization and 3D consistency, coupled with

inaccuracies in physically realistic lighting and identity preserva-

tion. Furthermore, personalization from a single view is di�cult

to achieve and often requires multiview images during the testing

phase or involves slow optimization processes. This paper intro-

duces Lite2Relight , a novel technique that can predict 3D consistent

head poses of portraits while performing physically plausible light

editing at interactive speed. Our method uniquely extends the gen-

erative capabilities and e�cient volumetric representation of EG3D,

leveraging a lightstage dataset to implicitly disentangle face re-

�ectance and perform relighting under target HDRI environment

maps. By utilizing a pre-trained geometry-aware encoder and a fea-

ture alignment module, we map input images into a relightable 3D

space, enhancing them with a strong face geometry and re�ectance

prior. Through extensive quantitative and qualitative evaluations,

we show that our method outperforms the state-of-the-art methods

in terms of e�cacy, photorealism, and practical application. This

includes producing 3D-consistent results of the full head, including

hair, eyes, and expressions. Lite2Relight paves the way for large-

scale adoption of photorealistic portrait editing in various domains,

o�ering a robust, interactive solution to a previously constrained

problem.

CCS CONCEPTS

• Computing methodologies → Image representations; Re-

�ectance modeling; Volumetric models; Image-based rendering.
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1 INTRODUCTION

Photorealistic editing and compositing of human portrait images

is a technical challenge underlying various graphics applications:

computationally enhanced photography [Sun et al. 2019], content

generation [Fried et al. 2020] and immersive telepresence [Cao et al.

2022] are some examples. Large-scale adoption of such applications

is limited by the challenge of solving this interactively with minimal

computing power using sparse data input, usually an image or video

from a single camera. The underlying technical challenge consists

of modeling the very diverse range of 3D geometry and re�ectance

of human heads from such sparse data and achieving a perceivable

high degree of photorealism.

An interactive photorealistic 3D portrait editing and relighting

solution that can generalize to unseen subjects from a single in-the-

wild input image does not exist due to multiple challenges. Solving

this under-constrained optimization problem with sparse data, like

a single 2D image, requires strong priors on the image formation

model. Volumetric generative models of faces learnt from large

image datasets [Bühler et al. 2023; Chan et al. 2020, 2021; Deng et al.

2022; Karras et al. 2020; Tewari et al. 2022a] have been successful

in modeling high-frequency detail including skin pores and strand-

level semi-transparent hair and provide a rich latent space capable

of modeling any arbitrary novel identity. They also enable semantic

editing such as adding accessories (like glasses) or adding or remov-

ing wrinkles etc. However, these methods do not natively allow

for relighting, which is required for accurately compositing the

face into di�erent backgrounds or environments. Some extensions

[Deng et al. 2023; Jiang et al. 2023; Pan et al. 2022, 2021; Ranjan et al.

2023] aim to disentangle the geometry and re�ectance of the face

from the environmental lighting by implicitly learning a subspace

of intrinsic components like albedo, specularity, and normals, but,

do not model the light transport accurately enough with ground

truth disentangled data. In-the-wild images have a low dynamic

range, non-linear photometric e�ects due to saturation and colored

lighting, and di�erent camera response curves. Hence, in-the-wild

images are incapable of disentangling the accurate dynamic range

of face re�ectance, leading to dampened and inaccurate relight-

ing results. However, these methods lack groundtruth supervision

during training, thus, despite following physically-based rendering

principles, they are physically inaccurate. This is indicated in pink

in Sec. 1.

Specialized hardware with controlled lighting, such as light-

stages [Debevec et al. 2000], have been used for physically accu-

rate disentanglement of geometry and re�ectance. Particularly, 2D

image-based rendering (IBR) using such data has been e�ciently

used to achieve physically-accurate relighting of portrait images

[Meka et al. 2019a; Pandey et al. 2021; Yeh et al. 2022]. Several

methods have attempted to learn a 3D generative model of the

face geometry and re�ectance using lightstage datasets. Therefore,

the inductive bias of the trained networks of the above methods is

learnt from a physically accurate dataset. NeLF [Sun et al. 2021]

relies on synthetically rendered “virtual” lightstage images for train-

ing, but at inference time su�ers from domain gap issues with real

data, and still requires at least 5 input views captured for the same

time frame, making it impractical for casual capture applications.

VoLux-GAN [Tan et al. 2022] and VoRF [Rao et al. 2023, 2022] use

real lightstage datasets to learn a 3D generative model of faces that

can be relit under target environment maps. While VoRF does so

by decomposing the input image into an “OLAT” re�ectance basis,

VoLux-GAN decomposes the image into intrinsic components and

renders “shading” images under a target environment map that are

passed through a neural rendering network to generate the relit

outputs. While both methods enable photorealistic and consistent

view-synthesis and physically accurate relighting, they have lim-

ited generative capacity to convert in-the-wild input images into a

re�ectance basis, and are weighed down at test time by the addi-

tional step of inversion and �netuning [Roich et al. 2021] for the

given image, thus, preventing their application for interactive use

cases. To circumvent the additional inversion step, several fast feed-

forward approaches have been proposed in the generative models

literature, that train an encoder to directly predict the latent code

or features given an input image [Richardson et al. 2021; Trevithick

et al. 2023a], but hasn’t been extended to the relighting task.

https://doi.org/10.1145/3641519.3657470
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We propose a novel technique Lite2Relight that takes an in-the-

wild portrait image or video and synthesizes 3D-consistent head

poses, physically plausible light editing at interactive frame rates as

outlined in Sec. 1. Our method uses a lightstage dataset to extend

the generative capabilities of EG3D [Chan et al. 2021] and learns

an e�cient volumetric representation to implicitly disentangle face

re�ectance and perform relighting given a target HDRI environ-

ment map. We represent the input image as a combination of a

low-dimensional latent vector and a feature image that lies in the

latent manifold of EG3D by using a pre-trained geometry-aware

encoder and feature alignment module by following the GAN in-

version process [Yuan et al. 2023]. To achieve relighting, we design

a simple MLP network that transforms the input latent vector to

the desired illumination space by conditioning the network on a

target environment map. We utilize the lighstage data [Weyrich

et al. 2006] to synthesize an illumination dataset and embed it in

the EG3D latent manifold to enable ground truth supervision of

our pipeline. We train the relighting network with the illumina-

tion dataset to transform the inverted latent code into the desired

illumination space. Since it is challenging to encode all 3D infor-

mation in the low-dimension relit latent code, similar to [Yao et al.

2022], we re�ne the generator convolution layer with the combi-

nation of inverted and relit feature codes. This allows our method

to learn physically accurate relighting in a 3D consistent manner,

thus enabling rendering a given portrait from a novel viewpoint

and performing various semantic edits made possible by the EG3D

latent space. In summary, we present:

• A lightweight technique that enforces a strong face geome-

try and re�ectance prior to lift 2D images to a relightable 3D

space. We achieve this by leverging a pre-trained 3D genera-

tive model of faces in combination with a lightstage capture

dataset to obtain a generalizable prior.

• Demonstration of view synthesis and light editing of human

faces from a single portrait image using the proposed prior

at interactive frame rates.

• Extensive quantitative and qualitative evaluation of the pro-

posed method against state-of-the-art techniques to demon-

strate its enhanced e�cacy.

Code and pre-trained checkpoints is available under https://vcai.

mpi-inf.mpg.de/projects/Lite2Relight//.

2 RELATED WORKS

We �rst discuss face re�ectance modeling methods that are con-

strained by a 2D prior and/or incomplete face modeling. We then

discuss 3D neural representations and facial editing methods that

utilize a 3D generative model. Finally, we discuss 3D portrait light-

ing methods, which are the most relevant to our work.

Face Appearance Modelling. Capturing and modeling human

faces to achieve highly authentic digital faces has been an active

area of research [Debevec et al. 2000; Weyrich et al. 2006; Zoll-

höfer et al. 2018]. Several recent learning-based methods have ex-

ploited 2D generative image models for facial relighting [Abdal

et al. 2021; B R et al. 2021a; Kwak et al. 2022; Richardson et al.

2021; Tewari et al. 2020a,b]. However, they cannot consistently

disentangle the underlying identity-speci�c geometry from the

view-dependent appearance, leading to inconsistent view synthesis.

Parametric face models [Blanz and Vetter 1999; Li et al. 2017] have

traditionally provided 3D priors for such tasks, but su�er from

their low-dimensional representations, which limit their capacity

to model high-frequency details such as wrinkles, and completely

fail for unstructured regions like hair. Although there exist methods

that accurately capture and model face re�ectance �elds, rendering

such digital avatars [Alexander et al. 2010; Seymour et al. 2017]

requires signi�cant manual e�ort. Several traditional method use

hand-crafted models and target speci�c parts of the face, such as

facial hair [Echevarria et al. 2014], skin wrinkles [Gotardo et al.

2018], eyes [Li et al. 2022] teeth [Wu et al. 2016] and lips [Garrido

et al. 2016] using computationally expensive optimization routines,

and often require a dense and invasive data capture mechanisms.

Using a parametric face model, multiple methods [B R et al. 2021b;

Yamaguchi et al. 2018] enable face re�ectance editing in the face

interior region for monocular inputs. Several image-based relight-

ing methods [Meka et al. 2019b; Nestmeyer et al. 2020; Pandey et al.

2021; Sun et al. 2019; Wang et al. 2020; Zhou et al. 2019] relight en-

tire human heads for a �xed viewpoint or identity-speci�c settings

[Bi et al. 2021]. Due to the lack of an underlying 3D representation

such methods are limited to only relighting as they cannot modify

the camera viewpoints.

3D Neural Representations and GANs. Neural Radiance Fields

(NeRF) [Mildenhall et al. 2020], model a 3D scene as a 5D continuous

radiance �eld function using a multi-layer perceptron (MLP) net-

work and di�erential volume rendering from multiple viewpoints.

This innovative approach enables precise 3D representations with-

out the need for explicit geometric modeling. In the realm of 3D

neural rendering, NeRF-based methods [Tewari et al. 2022b] have

successfully achieved realistic rendering of human avatars [Gafni

et al. 2021; Teotia et al. 2023] in a consistent 3D manner. Several

innovative approaches [Bühler et al. 2023; Cao et al. 2022; Hong

et al. 2022; Khakhulin et al. 2022; Ramon et al. 2021] have expanded

these techniques into multi-identity models, learning a facial prior

and demonstrating personalization even with sparse input data.

There has been a signi�cant e�ort [Chan et al. 2021, 2022; Deng

et al. 2022; Gu et al. 2022; Or-El et al. 2022] to blend Generative

Adversarial Networks (GANs) [Goodfellow et al. 2014] with NeRF

[Mildenhall et al. 2020], facilitating the learning of a latent facial

manifold. Notably, EG3D [Chan et al. 2022] incorporates StyleGAN

[Karras et al. 2020] into a 3D framework to generate a compre-

hensive generative 3D prior of faces. These rich generative priors

have opened avenues for portrait editing, primarily utilizing GAN

inversion techniques. Methods such as Richardson et al. [2021];

Roich et al. [2021]; Yao et al. [2022] have demonstrated embedding

portrait images into StyleGAN’s latent space. In 3D GANs, espe-

cially EG3D, optimization-based inversion methods [Ko et al. 2023;

Xie et al. 2022] have been used to update inverted latent codes to

minimize reconstruction loss. However, such methods can be slow

and often yield subpar editing quality [Yao et al. 2022], as the opti-

mized latent code could diverge from the original sampling space.

Encoder-based inversion methods [Trevithick et al. 2023b; Yuan

et al. 2023], in contrast, o�er faster performance with better regu-

larization due to the lack of an optimization loop. Live 3D Portrait

[Trevithick et al. 2023b] uses a ViT-based architecture [Dosovitskiy

et al. 2021] to learn a new triplane representation [Chan et al. 2022]

https://vcai.mpi-inf.mpg.de/projects/Lite2Relight//
https://vcai.mpi-inf.mpg.de/projects/Lite2Relight//
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Table 1: Our approach achieves amix of novel capabilities formonocular in-the-wild portrait image editing such as 3D consistent

pose synthesis, physically accurate relighting, semantic editing, and the e�ciency of a feedforward encoder-based inference

pipeline that enables interactive performance without the complexity of optimization-based �tting or �netuning. Note that

while some methods like LumiGAN [Deng et al. 2023] and NeRFFaceLighting [Jiang et al. 2023] can perform relighting, they

are not physically accurate due to the low-dynamic range of in-the-wild training data.

Monocular 3D Consistency Physical Relighting Optimization-free Semantic Editing

EG3D [Chan et al. 2021] ✓ ✓ ✗ ✗ ✓

Live 3D Portrait [Trevithick et al. 2023a] ✓ ✓ ✗ ✓ ✗

PhotoApp [B R et al. 2021a] ✓ ✗ ✓ ✓ ✗

LumiGAN [Deng et al. 2023] ✓ ✓ ✗ ✗ ✓

NeRFFaceLighting [Jiang et al. 2023] ✓ ✓ ✗ ✗ ✓

NeLF [Sun et al. 2021] ✗ ✓ ✓ ✓ ✗

VoRF [Rao et al. 2023, 2022] ✓ ✓ ✓ ✗ ✗

Ours ✓ ✓ ✓ ✓ ✓

using synthetic data from EG3D, e�ciently converting 2D portraits

to 3D while foregoing the rich latent manifold for semantic editing.

Drawing inspiration from E4E [Richardson et al. 2021], GOAE

[Yuan et al. 2023] trains an encoder to embed subjects within

EG3D’s, + space, also incorporating an attention-based module

to recover identity-speci�c features. This approach allows inverted

portraits to be elevated to 3D while retaining the capability for se-

mantic editing. We adapt such a 3D-aware encoder to invert desired

portraits into the latent space of EG3D and perform relighting at

interactive rates.

3D Portrait Relighting. Volumetric rendering approaches have

enabled simultaneous editing of viewpoints and illuminations for

both general scenes and human avatars without requiring explicit

3D geometry. The work of Boss et al. [2021]; Rudnev et al. [2022];

Zhang et al. [2021] perform intrinsic decomposition of general

scenes and relight under novel illumination. Using a lightstage

setup, Sarkar et al. [2023]; Yang et al. [2023b,a] demonstrate person-

speci�c relighting. Using a synthetic OLAT dataset Sun et al. [2021]

adapt PixelNeRF [Yu et al. 2021] to learn a generalizable 3D portrait

relighting method. Similarly, MEGANE [Li et al. 2023] trains an

MVP [Lombardi et al. 2021] representation that can generalize to

unseen subjects. Bothmethods need at least threemulti-view inputs,

which limits their application in many real-world scenarios. Instead,

our method takes a single monocular image as input.

Using a similar lightstage dataset, VoRF [Rao et al. 2023, 2022]

trains a NeRF-based autodecoder network that generalizes to un-

seen identities under monocular settings. However, these models,

trained on data that was captured in controlled setups with limited

numbers of subjects often lead to a less diverse face prior, resulting

in limited generalization towards in-the-wild samples. The method

we present here not only avoids these issues using the EG3D prior

but also computes results at interactive rates because it does not rely

on a rather costly implicit representation. Generative models like

EG3D o�er a rich face prior and can synthesize arbitrary numbers

of faces. On this basis, recent methods [Deng et al. 2023; Ranjan

et al. 2023; Tan et al. 2022] relight synthetic identities sampled

from a latent space. Here, Deng et al. [2023] combine precomputed

radiance transfer [Sloan et al. 2002] with adversarial learning to

relight portraits, but due to the self-supervised learning paradigm

this method struggles to learn physically accurate lighting. Addi-

tionally, the above methods focus on generating synthetic samples

and o�er very limited capability for editing a given input portrait.

Our method on the other hand can be controlled very accurately

by an explicit environment map as input.

3 METHOD

The primary aim of our method is to relight a portrait of a human

from a single input image under any desired novel viewpoint and

illumination. This is achieved without the need for time-intensive

optimization processes. This task is inherently underconstrained

due to depth ambiguity and the complex interplay between facial

features and varying illumination. Directly modeling light trans-

port is computationally expensive and approximations often lead

to non-photorealistic outcomes. Our approach circumvents these

challenges by implicitly managing light transport through neural

networks.

As illustrated in Fig. 2, we leverage EG3D [Chan et al. 2022], a 3D-

aware generative model known for its high-quality, generalizable

representations of human faces. To adapt the relighting task to the

feature space of EG3D, we �rst embed real images into the EG3D

space Sec. 3.2. Following this, a mapping network, trained on a

lightstage dataset (Sec. 3.1), is employed to transition the original

feature vector into a target feature vector. This enables us to render

the face under novel lighting conditions and viewpoints. Details

of the relighting module are further elaborated in Sec. 3.3. Finally,

the various loss functions utilized in our method are outlined in

Sec. 3.4.

3.1 Dataset

We use the multi-view lightstage dataset captured by [Weyrich et al.

2006] that has 353 subjects illuminated under # = 150 point light

sources where each subject is captured with 16 cameras. Hence,

the dataset contains a set of one-light-at-a-time (OLAT) images

$ = {O1, ...O# |O8 ∈ R
512×512×3} for every subject under 16 view-

points. Normally, “in the wild” images are not captured under such

OLAT conditions. Therefore, directly embedding OLAT images onto

the EG3D space will result in unfaithful reconstructions. Thus, to

alleviate this and obtain realistic scene illumination conditions, we
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Figure 2: Method Overview. (a) Given an input image �B , we use a pretrained encoder E to invert �B and obtain the latent vector

F+
B . We passF+

B through a pretrained EG3D network to render the inverted image �F+ and extract convolutional features�:
B

from GB6. (b) Next, we use image residual Δ� and �:
B as inputs to the AFA module, to obtain �B . (c) Given a target environment

map �C , our relighting network R generates ΔF , which is combined withF+
B to produce the relit latent code F̂+

C . (d) Subsequently,

we obtain �C by following Eq. 7. (e) Finally, we replace the :-th convolutional feature of GB6 by �C and perform a full forward

pass through the EG3D network with the latent code F̂+
C to generate �̂C , which is relit by �C . Note: G342 takes camera pose 2 as

input.

linearly combine OLAT images with environment maps by follow-

ing image-based relighting [Debevec et al. 2000] as follows

I =

#
∑

8=0

� (8) · O8 (1)

where I ∈ R512×512×3 is the relit image and � : N<# → R3 is the

downsampled version of the input environment map.

Training Data. We relight all the subjects under 50 natural illu-

mination conditions randomly sampled from the Laval Indoor and

Outdoor datasets [Gardner et al. 2017; Hold-Geo�roy et al. 2019] by

using Eq. 1. To obtain paired data for supervision, for each training

step we randomly sample two naturally relit images of the same

subject: The input i.e. the source image is referred to as �B and is

relit with a source environment map �B . The target �C is relit with

�C .

3.2 3D GAN Inversion

We adopt EG3D [Chan et al. 2022], a 3D-aware generative model

that has demonstrated remarkable generalization results, as our

backbone. The generator GB6 , based on StyleGAN [Karras et al.

2020], maps a latent vectorF+
B and camera pose 2 to triplane features

that are further decoded to render a low-resolution image. This low-

resolution image is upsampled to 512×512 using a super-resolution

module. We formally denote the decoder, volume rendering, and

upsampling as G342 . The generated image is obtained as:

�F+ = G342 (GB6 (F
+
B ), 2) (2)

To obtain robust features in the EG3D space that are represen-

tative of the training images of our dataset, we use an encoder E,

adopting [Yuan et al. 2023]. E maps a given source image �B to a

latent codeF+
B ∈ R14×512:

F+
B = E(�B ) (3)

However,F+
B is a low-dimensional latent code that is insu�cient to

learn a rich representation of the portrait. Thus, we follow [Yuan

et al. 2023] and further adapt their “Adaptive Feature Alignment”

module which has attention-based and convolutional layers to learn

an additional feature code. We denote the module as AFA and it

takes the di�erence between the source image and the predicted

image as input, i.e. Δ� = �B − �F+ , along with features of GB6 :

�B = AFA(Δ� ,�:
B ) ∈ R

32×32×512 (4)

where�:
B ∈ R32×32×512 is the k-th convolutional feature of GB6 , for

some �xed k. Finally, we use the remaining layers of GB6 , starting

from k + 1, to obtain the triplane features that are used to recon-

struct the input image. Thus,F+
B and �B together serve as a robust

representation of �B in a high-dimensional latent space.

3.3 Relighting

In this section, we explain the steps involved in relighting �B given

a target environment map �C . The latent space of EG3D contains

a rich representation of faces and we leverage this advantageous

latent space to perform relighting. Our aim is to embed the target

images �C to this latent space and obtain F̂+
C ∈ R14×512. However,

as described in Sec. 3.1, a pair of �B and �C have the same subject

relit under di�erent environment maps. Thus, we have an MLP R,

that maps the source latent code F+
B and the target environment

map �C to a latent o�set ΔF :

ΔF = R(F+
B , �C ) ∈ R

14×512 (5)
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To obtain F̂+
C , we add this o�set toF+

B :

F̂+
C = F+

B + ΔF (6)

A relit image can be directly obtained by giving F̂+
C as the input

to G342 . However, we found the obtained image to not preserve

subject-speci�c details well, altering the perceived identity (see

ablation in Sec. 4.4). This is because F̂+
C is a low-dimensional rep-

resentation that is insu�cient to capture the subject details. But,

the AFA model can not be used as it requires the relit image which

we don’t have access to. Hence, we aim to transfer �ne-scale de-

tails present in �B to the target illumination space: We perform a

forward pass through GB6 with F̂+
C as input and extract the k-th

convolutional feature �:
A . Finally, we combine the convolutional

features of the source and target image by following [Yao et al.

2022]:

�C := �B +�
:
A −�:

B ∈ R32×32×512 (7)

Thus, F̂+
C and �C serve as a robust representation of the predicted

relit image in a high-dimensional latent space. Finally, we replace

the k-th convolutional feature of GB6 with �C and perform a full

forward pass as follows:

�̂C = G342 (GB6 (F̂
+
C , �C ), 2) (8)

3.4 Loss Functions
We train R, while the networks GB6 , G342 and AFA remain frozen.

As described in Sec. 3.1, we �rst obtain a set of paired source and

target images �B , �C . Given �B as input and target illumination condi-

tion �C , the goal is to predict a �̂C that is as close to �C as possible.

We obtain target latent codeF+
C as described in Eq 3 using �C . As a

training objective, we minimize a combination of reconstruction

and latent loss:

Reconstruction Loss. : We penalize deviations of �̂C from �C by !1

distance:

LC =





�̂C − �C






1
(9)

Perceptual Loss. : Supervision in the image space alone resulted in

poor reconstruction of certain illumination conditions in the target

space. Therefore, we employ a feature-based loss LLPIPS [Johnson

et al. 2016] between �̂C and �C .

LLPIPS =





ΦE66 (�̂C ) − ΦE66 (�C )






2

2
(10)

Where ΦE66 is the extracted features from the pre-trained VGG [Si-

monyan and Zisserman 2015] network. We conduct an ablative

study (Sec. 4.4), to demonstrate the e�ectiveness of LLPIPS for re-

lighting.

Latent Loss. : To ensure that the F̂+
C predicted by R is in the

same part of the EG3D latent space as F+
B (and not in a region

that behaves di�erently under GB6), we penalize the !2 distance

between F̂+
C andF+

C :

Llat =




F̂+
C −F+

C







2

2
(11)

The total loss is given as:

Ltotal = _0Llat + _1LC + _2LLPIPS (12)

4 EVALUATION

We describe the datasets used for evaluation in Sec. 4.1. In Sec. 4.2

we discuss qualitative evaluation of simultaneous view synthesis

and relighting for in-the-wild portraits. We report quantitative

analysis on the lightstage dataset in Sec. 4.3 and discuss ablative

experiments in Sec. 4.4.

4.1 Dataset

We create an evaluation dataset based on a lightstage dataset [Weyrich

et al. 2006] with 10 unseen subjects, illuminated under 10 novel il-

lumination conditions under 12 novel camera viewpoints. Linearly

combining OLATs with downsampled HDRI environment maps

(like in Sec. 3.1), gives us relit ground truth images. Additionally,

we qualitatively evaluate Lite2Relight using diverse subjects cap-

tured in the wild [Caselles et al. 2023; Livingstone and Russo 2018;

Ramon et al. 2021; Shih et al. 2014].

4.2 Relighting in-the-wild Portraits

In Fig. 3 and Fig. 5, we show Lite2Relight ’s capability to modify

viewpoint and illumination of diverse in-the-wild portraits. Our

method retains 3D consistency for head poses as well as relight-

ing. This can be speci�cally observed in the last two columns of

both �gures, where the subject is relit under the same environ-

ment map, and shows consistent relighting under two di�erent

camera views. This is because the 3D representation, coupled with

accurate relighting in the latent manifold, faithfully preserves the

identity and expression of subjects. From (Fig. 3 and Fig. 5) we

observe strong identity preservation. Moreover, intricate details

like expressions (see rows 1 of Fig. 3 and Fig. 5) and accessories

such as spectacles under varying illumination scenarios (see row

4 of Fig. 5) are preserved as well. Owing to the robust generative

prior, our method generalizes to a wide variety of subjects, while

preserving/synthesizing complex re�ectance phenomena, such as

subsurface scattering and specular highlights, particularly notice-

able on the nose, cheeks, and forehead (see rows 2 and 3 of Fig. 3),

as well as soft-shadows (see row 1 of Fig. 3, rows 2 and 3 of Fig. 5).

4.3 Comparisons to Previous Works

We compare our method to state-of-the-art methods for simultane-

ous viewpoint and illumination editing: (1) VoRF [Rao et al. 2023,

2022] employs a NeRF-based auto-decoder architecture learning a

volumetric re�ectance �eld from an OLAT lightstage dataset. (2)

PhotoApp [B R et al. 2021a] leverages a 2D StyleGAN prior for

faces, focusing on learning latent transformations to manipulate

viewpoint and illumination. (3) NeRFFaceLighting [Jiang et al. 2023]

leverages EG3D design principles to learn a separate appearance

and lighting triplane. (4) NeLF [Sun et al. 2021] trains pixelNeRF[Yu

et al. 2021] inspired 3D representation using a synthetic lightstage

dataset to derive 3D geometry and facial re�ectance properties. For

all the methods, we use the original implementation provided by the

authors and train it on the lightstage dataset. For a fair qualitative

assessment, VoRF results are upsampled to 512 × 512 pixels. Fig. 4

and Tab. 2 indicate that Lite2Relight not only surpasses the baseline

approaches in rendering high-quality relit images under various

scene illuminations but also excels in maintaining 3D consistency

and identity �delity.
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Input �1 NV 1, �2 NV 2, �3 NV 3, �3

Figure 3: Qualitative Results: Relighting in-the-wild Portraits. col. (column) 1: input in-the-wild image, col. 2: image relit with

HDRI environment maps (inset) (�1) under the same viewpoint. col. 3: Novel View (NV) 1 with a di�erent environment map (�2).

col. 4 and 5: NV 2 and 3 under the same map. This �gure demonstrates that Lite2Relight can generalize robustly to in-the-wild

images, preserve subject-speci�c face semantics and perform relighting under various environment maps simultaneously.

Image credits to Flickr.

Table 2: Quantitative Results: Comparisons to Previous

Works. We report SSIM, landmarks distance (LD), and PSNR

computed on the the test data (Sec. 4.1), for Lite2Relight and

previous works, relighting subjects under novel views.

SSIM ↑ LD ↓ PSNR ↑

NeLF (3-views) 0.75 NA 19.72

PhotoApp 0.72 34.08 29.13

VoRF 0.69 16.90 20.21

NeRFFaceLighting 0.79 28.31 13.41

Lite2Relight 0.83 9.76 28.3

Metrics. Apart from Peak Signal-Noise Ratio (PSNR) and Struc-

tural Similarity Index Measure (SSIM), we also use a landmark

distance metric (LD) to evaluate the 3D consistency of facial geom-

etry. It is calculated as the average deviation of 68 facial key points

[Bulat and Tzimiropoulos 2017] over the evaluation dataset.

VoRF. Fig. 8 shows that VoRF is unable to generalize to subjects

that are out of the training distribution (lightstage data): It struggles

with identity preservation (row 1), as well as expression preserva-

tion and capturing eye details (rows 2 and 3). This is due to VoRF’s

dependence on a face prior learned from the lightstage data. For

lightstage subjects Fig. 4 VoRF does show reasonable results. In

contrast, however, Lite2Relight can preserve facial details, expres-

sions, and even eye details for out-of-distribution data (columns 4

and 5 in Fig. 8), thanks to our design where we leverage informa-

tion from large-scale in-the-wild data (FFHQ). Furthermore, due

to VoRF’s NeRF-based framework, which uses large amounts of

memory, its outputs are con�ned to resolution 128 × 128 (see blur-

riness in results in Fig. 4). Lite2Relight , on the other hand, based

on the triplane framework, can preserve �ne details at resolution

512 × 512. Finally, VoRF requires a two-step optimization process

that takes ∼ 10mins to relight a single image, making it unsuitable

for interactive applications. While Lite2Relight , with its encoder-

based architecture and an e�cient triplane-based volume rendering

technique, achieves interactive performance (7-31 fps. See Sec. 1 of

SupMat).

PhotoApp. PhotoApp achieves high image quality (see PSNR in

Tab. 2), thanks to the latent face prior from StyleGAN [Karras

et al. 2020]. However, PhotoApp’s inherent lack of a native 3D

representation leads to noticeable inconsistencies in subject identity

under novel views. This results in much lower SSIM and LD scores
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compared to Lite2Relight , which uses an e�cient NeRF-based

representation, and excels in maintaining 3D consistency. Fig. 4

visualises this advantage: PhotoApp deviates from the original

identity, while Lite2Relight maintains a close resemblance to the

input subject.

Furthermore, Photoapp manipulates both viewpoint and illu-

mination in the latent space which is challenging to control (row

2 in Fig. 4). Lite2Relights’s latent transformation is con�ned to

illumination, allowing us to control the viewpoint and illumina-

tion in a disentangled way. Further results shown in Fig. 6 demon-

strate that PhotoApp struggles to preserve the identity (rows 1

and 3) and even shows inconsistent illumination across di�erent

views. Lite2Relight does preserve the identity of the subject in a

3D-consistent manner and maintains the desired lighting across all

views.

NeRFFaceLighting. In our analysis of NeRFFaceLighting (NFL),

as illustrated in Fig. 4, NFL clearly shows signi�cant lighting arti-

facts, poor identity retention (can be noticed in row 1), and overly

saturated e�ects (observed in row 2). These shortcomings are quanti-

tatively evidenced in Tab. 2, where NFL consistently underperforms

in comparison to Lite2Relight . We hypothesize that these issues

stem from the inherent complexities in jointly optimizing illumi-

nation and identity during the inversion process. NFL employs an

explicit decomposition of the input into albedo and shading compo-

nents, which makes the inversion process complicated and fails to

recover the true identity accurately. As a result, the input light gets

baked into the albedo during relighting, as shown in row 2, where

the prediction of the subject has a red-colored skin taken from the

input light source. In contrast, our method mitigates the albedo-

lighting ambiguity by utilizing a supervised training approach with

a lightstage dataset, where each subject is relit under various light-

ing conditions. Moreover, our strategy includes an encoder-based

inversion process that helps preserve identity integrity and achieve

more accurate relighting outcomes.

NeLF. NeLF requires at least three input views to obtain reason-

able results. This makes NeLF unusable for almost all in-the-wild

portraits. Moreover, NeLF struggles to reconstruct a reasonable

facial structure even with multiview inputs as it fails to represent

the underlying geometry leading to low scores in Tab. 2. We can

observe the results in Fig. 7, where NeLF’s results were obtained

from 3 input views producing distorted facial reconstructions. In

contrast, our approach demonstrates superior generalization to

novel subjects from a single image. Furthermore, our method ex-

hibits the ability to accurately relight these subjects, maintaining

both the integrity of facial features and the overall photorealism.

4.4 Ablation Study

Signi�cance of Feature Code Manipulation. To evaluate the im-

portance of Eq. 7, particularly focusing on the comparative roles

of �C and �:
A , we compare our original method to a variant that

does not replace �:
A by �C . The results, as depicted in Fig. 9, reveal

that the incorporation of �C signi�cantly enhances the recovery of

�ne-scale, identity-speci�c details. This improvement is especially

noticeable in the eye region of row 2, as well as in the jawlines

and overall facial contours of all the rows. The e�cacy of �C in

enhancing the �delity of these features is further corroborated by

its superior performance in quantitative evaluations, see Tab. 3.

Table 3: QuantitativeResults: Ablation Study.We report SSIM,

landmarks distance (LD), and PSNR on the test data of light-

stage, where subjects are relit under novel viewpoints.

SSIM ↑ LD ↓ PSNR ↑

w/o F-space 0.831 10.44 28.29

w/o LLPIPS 0.830 10.12 28.32

Full Model 0.83 9.76 28.33

Importance of Perceptual Loss. It is feasible to supervise R solely

using Llat and LC, omitting LLPIPS, thereby e�ectively only su-

pervising the latent vectors to preserve identity. However, as our

�ndings in Fig. 10 suggest, relying solely on reconstruction losses

may not guarantee accurate relighting: Rows 1 and 2 show in-

accuracies in the overall color of the images, while shadows and

highlights are noticeably absent in row 3.We hypothesize that these

discrepancies arise due to the inherent limitations of reconstruction

losses, which do not necessarily account for perceptual plausibility.

Adding LLPIPS, as suggested before [Johnson et al. 2016], ensures a

more accurate relighting, as demonstrated in the column labeled

“w/ LLPIPS”. Here, the relit images not only more closely resemble

the reference illumination but also achieve higher scores across

quantitative metrics. Additional ablations are provided in the Sup-

Mat.

5 CONCLUSION

In conclusion, our work, Lite2Relight , represents a signi�cant

advancement in the �eld of 3D portrait editing and relighting, ef-

fectively addressing the complex challenges associated with in-

teractive, photorealistic image processing for AR/VR applications.

By innovatively leveraging a pre-trained 3D generative model in

conjunction with a lightstage dataset and a 3D-aware encoder, we

have successfully developed a method that lifts 2D images into a

relightable 3D space with strong geometric and re�ectance accu-

racy. This technique not only simpli�es the process of achieving

photorealism in portrait editing but also ensures practical applica-

bility byminimizing the need for extensive computational resources

and complex data inputs. Our work with Lite2Relight showcases

the capability of performing view synthesis, light editing, and se-

mantic modi�cations at interactive rates from single, in-the-wild

portrait images, a notable development in the �eld. The e�ciency

and �delity with which Lite2Relight accomplishes these tasks have

meaningful implications for the evolution of personalized digital

content creation, particularly within the context of AR/VR appli-

cations. The extensive evaluations of our method against current

state-of-the-art techniques highlight its superior performance and

practicality, reinforcing our contribution to the domain of computa-

tional photography and graphics. We believe that the release of our

code and pretrained models will foster further research and devel-

opment, potentially leading to widespread adoption and continuous

improvement in this �eld.
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Figure 4: Qualitative Results: Comparisons to Previous Works. We compare with NFL [Jiang et al. 2023], VoRF [Rao et al. 2023,

2022] and PhotoApp [B R et al. 2021a].For each method, including ours, a single input view is utilized to generate novel views

alongside relighting of the lightstage subjects. In comparison to the leading state-of-the-art techniques, Lite2Relight demon-

strates superior ability in maintaining subject identity and capturing �ner details.

Input �1 NV 1, �2 NV 2, �3 NV 3, �3

Figure 5: Qualitative Results: Relighting in-the-wild Portraits. col. (column) 1: input in-the-wild image, col. 2: image relit with

HDRI environment maps (inset) (�1) under the same viewpoint. col. 3: Novel View (NV) 1 with a di�erent environment map

(�2). col. 4 and 5: NV 2 and 3 under the same map. We show additional results to demonstrate generalization, 3D consistent pose

of subjects, and relighting results of Lite2Relight for in-the-wild images. Image credits to Steven R. Livingstone and Flickr.
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Figure 6: Qualitative Results: Comparisons with PhotoApp

[B R et al. 2021a]. We conduct comparisons using the H3DS

dataset [Caselles et al. 2023; Ramon et al. 2021]. The �rst col-

umn displays the input images, followed by three columns

showcasing novel view synthesis results under the same en-

vironment map. This comparison highlights that PhotoApp

fails to retain identity-speci�c details as e�ectively as our

method. Notably, the subject’s eyes and nose region appear al-

tered across di�erent views in PhotoApp, whereas it remains

consistent and true to the input in Lite2Relight . Image cred-

its to Pol Caselles.

Input NeLF Ours GT

Figure 7: Qualitative Results: Comparison with NeLF [Sun

et al. 2021]. We present evaluations using the lightstage

dataset [Weyrich et al. 2006]. For NeLF, three input views are

provided, whereas for Lite2Relight , only the �rst column

input is used. NeLF exhibits artifacts under novel viewing

conditions, whereas Lite2Relight maintains 3D consistency

across di�erent viewing angles.

Input VoRF VoRF Ours Ours

Figure 8: Qualitative Results: Comparisons with VoRF [Rao

et al. 2023, 2022]. We present evaluations on the Ravdess [Liv-

ingstone and Russo 2018] dataset. The �rst column contains

the input images, followed by columns depicting simulta-

neous view synthesis and relighting results under varying

environment maps. VoRF struggles to generalize to subjects

outside the training data distribution, exhibiting limitations

in generalization. In contrast, Lite2Relight demonstrates ro-

bust generalization, preserves subject-speci�c details, and

achieves accurate relighting.Image credits to Steven R. Liv-

ingstone.

Input GT with F without F

Figure 9: Ablation Study: Signi�cance of Feature Code Ma-

nipulation. The label “With F” denotes results obtained after

manipulating the feature code according to Eq. 7, whereas

“Without F” implies the direct use of �:
A . The results demon-

strate thatmanipulating the feature code is crucial for achiev-

ing �ne-grained identity preservation.

Input GT w/ LLPIPS w/o LLPIPS

Figure 10: Ablation Study: Importance of Perceptual Loss.

Qualitative comparison of results with and without LLPIPS.

Results indicate that using LLPIPS improves the quality of

relighting.
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