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1. Detailed Quantitative Comparison
In Table 1 we present the detailed breakdown of the

metrics into texture classes for all datasets. We report the
PRO(0.3), AUROC, and 𝐹1 metrics as introduced in the main
paper.

2. Additional Qualitative Comparison
As mentioned in the main paper, we add here more

visualizations for an extensive quality comparison between
our method and the current state-of-the-art zero-shot method
of Aota et al. [1].

2.1. Thresholded Results

We visually compare the anomalous regions extracted by
different methods, by thresholding the anomaly maps. We
compute the optimal threshold with respect to the 𝐹1 measure
for each texture class individually and display the anomalous
area in the original texture. This visualization is included in
Figure 1.

2.2. Complete Results

To facilitate the comparison between our method
and the main baseline of Aota et al. [1], we present
the entirety of our anomaly maps using a static html
tree. The results can be conveniently browsed under
reality.tf.fau.de/pub/ardelean2024highfidelity.html.

To get from continuous anomaly scores to the visualiza-
tions we perform the following. We consider each texture
category/class independently and normalize the scores (same
linear scale and bias within each category) for each anomaly
prediction, mapping the whole class’s minimum and max-
imum to 0 and 1, respectively. As described in the main
paper, the borders (≈ 10%) of each image are ignored during
normalization, and they are afterward clipped accordingly.
The continuous scores are then mapped to the “Reds” color
scheme.

3. Failure Cases
Figure 2 investigates the failure cases of our method. FCA

is designed to perform anomaly localization for textured
images by comparing patches with a global reference. As
the complexity of the normal texture distribution increases,
a single aggregated reference cannot fully capture this com-
plexity. As shown in the first two rows, complex bimodal
textures with large periodicity present difficulties for our
method when a single reference is used. Taking the 𝑘-NN
references alleviates the issue; however, as explained in the
main paper, this solution is not feasible for high-resolution
images. The third row in Figure 2 shows a different type
of failure. Our formulation assumes that there are enough
normal patches in the original image to infer normalcy. When
testing on a center-cropped image from MVTec AD tile class
(center crop of 512 × 512), one can see that if anomalies
cover the majority of the image, our method is unable to
properly detect these defects.

4. Additional Study
We further inspect the proposed approach through a direct

ablation and study of the FCA sensitivity to its parameters.

4.1. Direct Ablation

In Table 2, we perform a direct ablation of the components
which constitute the proposed method. Ablating F means
instead of the default features, extracted by a WideResnet-
50 [14] pretrained on ImageNet, we use the same architecture
but no pretraining, i.e. randomly initialized weights. Ablating
R means instead of our Wasserstein-optimal feature set
(see Section 3.3 main text), we simply take the average
of all feature patches in the image. Ablating HR gives
the difference between running at full resolution (1024 ×
1024) over low resolution (320 × 320). Ablation of FCA is
performed by replacing our novel Patch Statistics Comparison
method with the EMD between histograms of the features in
each patch. In this case, the reference is the global histogram.
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Input Image GT mask Ours Ours320 + 𝑘-NN Aota et al. [1]

Figure 1. Qualitative comparison on challenging examples, displaying anomalous regions detected by each method via thresholding of the
predicted anomaly maps. The respective thresholds are chosen to be 𝐹1-optimal. The thresholded (binary) maps are represented through
their enclosing contours; all images are shown after cropping to the center.



Ours Ours + KNN Aota et al. [1]
MVTec AD [4] PRO AUROC F1 PRO AUROC F1 PRO AUROC F1
carpet 95.44 98.30 72.58 96.92 98.81 71.53 96.13 98.83 69.97
grid 98.07 99.46 61.62 97.77 99.27 52.41 97.01 99.12 51.89
leather 98.90 99.45 66.06 98.92 99.52 60.26 98.13 99.47 58.74
tile 96.33 98.22 82.16 88.95 94.31 65.55 84.29 93.41 63.74
wood 97.18 98.22 76.34 95.22 96.98 62.42 93.56 96.54 58.68
DTD-Synthetic [1] PRO AUROC F1 PRO AUROC F1 PRO AUROC F1
Blotchy 099 98.67 99.55 78.92 98.73 99.57 79.50 97.60 99.19 69.56
Marbled 078 97.97 99.33 76.25 98.05 99.37 76.60 96.51 98.80 66.11
Mesh 114 94.44 97.63 65.46 95.91 98.16 66.95 95.14 97.75 64.16
Stratified 154 98.78 99.15 66.67 98.81 99.19 66.80 98.53 99.25 64.48
Woven 068 97.24 98.86 70.51 97.31 98.92 70.72 95.34 98.29 65.61
Woven 125 98.51 99.52 77.03 98.66 99.56 77.59 97.00 98.99 67.50
Fibrous 183 96.95 98.96 72.82 97.21 99.06 73.29 94.42 98.20 65.42
Matted 069 89.43 99.33 76.15 88.89 99.37 76.60 89.34 99.17 68.64
Perforated 037 94.55 96.60 64.66 96.62 97.76 68.78 95.74 97.05 67.41
Woven 001 94.73 98.93 66.17 97.79 99.59 68.96 96.51 99.42 63.59
Woven 104 89.98 96.84 64.93 90.40 96.96 66.05 89.78 96.60 65.28
Woven 127 85.26 91.63 58.88 92.82 94.62 69.58 85.96 92.22 63.81
WFT [5] PRO AUROC F1 PRO AUROC F1 PRO AUROC F1
texture 1 92.38 97.98 80.34 85.36 94.25 68.46 89.01 95.94 73.12
texture 2 86.77 98.56 77.91 87.12 98.13 77.05 80.16 96.28 71.02
Aitex [12] PRO AUROC F1 PRO AUROC F1 PRO AUROC F1
t 00 78.00 95.08 49.41 75.19 94.08 49.56 62.91 90.21 45.33
t 01 76.85 91.28 69.62 80.08 92.34 73.47 70.71 91.31 71.04
t 02 96.34 99.32 56.30 96.57 99.33 56.93 92.92 99.02 53.45
t 03 88.77 97.94 68.04 89.44 97.97 67.75 87.43 97.59 65.83
t 04 99.39 99.79 72.44 99.39 99.79 72.23 97.89 99.75 72.04
t 05 98.15 99.17 49.34 98.04 99.11 47.66 97.95 99.05 43.41
t 06 99.97 99.99 71.60 99.97 99.99 70.73 99.98 99.99 76.54

Table 1. Metrics breakdown into texture classes.

F R HR FCA PRO(0.3) AUROC
✗ ✓ ✓ ✓ 70.24 87.99
✓ ✗ ✓ ✓ 69.62 78.58
✓ ✓ ✗ ✓ 95.46 97.74
✓ – ✓ ✗ 95.35 98.00
✓ ✓ ✓ ✓ 97.18 98.73

Table 2. Ablating different components of our pipeline: F -
Feature Extractor, R - Reference, HR - Running the method at high
resolution. See text for more details.

4.2. Sensitivity to parameters

Our method has only 3 parameters: 𝑇 , 𝜎𝑝 , and 𝜎𝑠 . Addi-
tionally, the image size can be considered a preprocessing
parameter that influences the performance of the method.
In the main paper, we demonstrated the robustness of our
approach to the choice of these parameters by running all
experiments with fixed 𝜎𝑝 = 3 and 𝜎𝑠 = 1. We set 𝑇 = 9

when running at full resolution and 𝑇 = 3 at low resolution
(320 × 320). This fixed setup performed well on all datasets
tested. In Figure 3 we further show the relationship between
varying parameters and the performance on MVTec AD [3].
We run our method at full resolution (1024 x 1024) in three
settings with 𝑇 ∈ {7, 9, 11}. In each case, we vary 𝜎𝑝 and
𝜎𝑠 and observe that FCA is robust to these variations. The
performance deteriorates significantly when 𝑇 = 7, which is
primarily due to a reduced receptive field leading to more
false positive predictions. In general, 𝑇 should be set large
enough to capture the periodicity of the texture.

5. Miscellaneous Details
When evaluating the different options for patch statistics

comparison (Section 3.2 main text) we use𝜎 = 6 for Gaussian
spatial smoothing for all methods. In the case of FCA,𝜎𝑝 = 6
and 𝜎𝑠 = 3. These hyperparameters are calibrated for the
preliminary experiment, where the size of feature maps is
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Figure 2. Visualization of failure cases caused by complex normal
distributions with large texture period or anomaly regions that cover
the majority of an image. All images are shown after cropping to
the center.

significantly larger (256 × 256).
When computing the histogram method for comparing

patches we scale the features to the interval [0.0, 1.0] and use
a fixed number of 10 bins. Using more bins yields marginal
improvements in quality but increased computational cost.
We also scale features to [0.0, 1.0] when computing SWW
and FCA to ensure a similar scale across channels and images.

When computing the scores for Aota et al. [1], SAA+ [6],
and April-GAN [7] the official code has been used and
run with the default parameters; for Saliency [8] we used
a public unofficial implementation1; for Bellini et al. [2]
we reimplemented the method described by the authors;
for PatchCore [10], RD++ [13], MAEDAY [11], and Win-
CLIP [9] we take the results directly from the papers which
introduce the respective methods.

6. Code
The source code for the introduced method is available at

github.com/TArdelean/AnomalyLocalizationFCA.
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Figure 3. Sensitivity of the method to parameters’ variations for the MVTec AD dataset, at full resolution (1024×1024). ‘Ours default’ is
obtained with 𝑇 = 9, 𝜎𝑝 = 3.0, and 𝜎𝑠 = 1.0.


