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1. Additional Results

1.1. Quantitative Comparison

We evaluate all methods on the synthetic data set BunnySynth by comparing the final, refined color and depth images (see Fig. 1

and Fig. 3) to the ground truth, i.e., the initial color and depth frame at four times the resolution (7680× 4320 px).

We report PSNR, the structural similarity SSIM [1] and the perceptual quality LPIPS [2] for the refined color in Tab. 1 and RMSE

and MAE for the resulting depths in Tab. 2, revealing a significant advantage of our method. Furthermore, we show the error maps

(per-pixel absolute error) for the refined color images compared to the ground truth in Fig. 2 and the absolute distance error [mm]

for the corresponding depth maps in Fig. 4. Note that invalid (unknown) pixels were excluded in all error calculations for per-pixel

metrics.

Table 1: Quantitative evaluation of the refined color for the synthetic data set BunnySynth. We report the average

PSNR (dB) (higher is better) and SSIM [1] (higher is better) over the full image to evaluate the overall consistency to

the ground truth as well as the average error over a selected region R1 (see Figs. 1 and 2) to evaluate the amount of

detail achieved in the refined image. To evaluate perceptual quality, we employ the LPIPS [2] score (lower is better),

which uses deep features.

Full image Region R1

PSNR (dB) (↑) SSIM (↑) LPIPS (↓) PSNR (dB) (↑) SSIM (↑) LPIPS (↓)

Fu21 [3] 17.30 0.76 0.50 9.82 0.33 0.44

Niessner13 [4] 19.59 0.87 0.41 11.23 0.44 0.64

Lee20 [5] 22.26 0.81 0.42 17.08 0.65 0.31

Ha21 [6] 15.22 0.66 0.58 16.07 0.46 0.51

Ours 29.50 0.96 0.16 18.32 0.73 0.18

Table 2: Quantitative evaluation of the resulting depths for the synthetic data set BunnySynth. We report the average

RMSE (mm) (lower is better) and MAE (mm) (lower is better) over the full image to evaluate the overall consistency

to the ground truth as well as the average error over a selected region R2 (see Figs. 3 and 4) to evaluate the achieved

accuracy at object silhouettes.

Full image Region R2

RMSE (mm) (↓) MAE (mm) (↓) RMSE (mm) (↓) MAE (mm) (↓)

Fu21 [3] 101.59 10.40 194.93 41.07

Niessner13 [4] 87.92 7.79 181.99 36.12

Lee20 [5] 82.05 7.12 163.76 28.68

Ha21 [6] 80.60 7.03 146.53 23.57

Ours 65.22 3.54 69.56 5.66
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Fig. 1: Results (refined color) of the synthetic data set BunnySynth, used for the quantitative comparison in Tab. 1. See also Fig. 10 for a comparison with the initial,

unrefined frame.
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Fig. 2: Error maps (per-pixel absolute error) corresponding to the refined color images shown in Fig. 1.
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Fig. 3: Results (refined depth) of the synthetic data set BunnySynth, used for the quantitative comparison in Tab. 2. Depth maps are shown using a Parula colormap

ranging from 0.5 m to 4.5 m for the full image and from 0.85 m to 1.0 m for the inset.
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Fig. 4: Absolute distance error [mm] corresponding to the resulting depth maps shown in Fig. 3.
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1.2. Robustness to Illumination Changes

Fig. 5 and Fig. 6 demonstrate the robustness of our proposed pipeline against illumination changes and differences in white-balance

or auto-exposure in the input footage by using a Laplacian pyramid merging based on [7].

Compared to a simple color merging on flat image representations (Fig. 5) or competing methods (Fig. 6), our reconstruction

pipeline retains the base color of the initial reference image (Fig. 10) by exploiting a frequency-oriented color fusion and, thus, does

not require local or global optimization for color harmonization.
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Fig. 5: Robustness to illumination changes. (a) Our approach combined with a simple color merging on flat image representations. (b) Ours with the Laplacian pyramid

merging based on [7], as proposed in Sec. 4.7 in our paper.
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Fig. 6: Robustness to illumination changes. Comparison with the 3D scene reconstruction methods Fu21 [3], Niessner13 [4], Lee20 [5] and Ha21 [6]. See also Fig. 10

for a comparison with the unrefined reference image.
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1.3. Comparison to 2D Image Reconstruction

Fig. 7 compares the results of our approach with the 2D image reconstruction methods Kluge20 [7] and Autopano [8] (based on

Brown et al.’s AutoStitch [9, 10]), which do not utilize the input depth maps to correct for parallaxes in the scenes. According to [7],

Autopano is the only method available that is capable of fusing color images with a very high discrepancy in object-space resolution.

However, Autopano fails to correctly align the input footage even for data sets with low (BrickWall) to moderate (Memorial)

amounts of disparity, leading to strong distortions and misalignments in the final results. While Kluge20 works robustly on the

BrickWall data set, however, for the Memorial data set, the limitations of the alignment using a homography lead to ghosting artifacts.

Our method is able to reconstruct the silhouettes and captures more details than Autopano and Kluge20.
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Fig. 7: Comparison with the 2D methods Kluge20 [7] and Autopano [8]. See also Fig. 10 for a comparison with the unrefined reference image.
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2. User Guidance

The current per-pixel level-of-refinement map can be visualized to guide the user during reconstruction to areas needing more

refinement. Fig. 8 shows the final level-of-refinement map for each data set to visualize the amount of detail incorporated into our

method’s final reconstruction, as shown in Figs. 11 to 13 (right column).
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Fig. 8: The final level-of-refinement maps for each data set visualizing the amount of detail incorporated into the final reconstruction (ours). Brighter colors indicate a

higher amount of incorporated details.
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3. Progressive Voting Scheme for Depth Fusion

Fig. 9 shows an alternative visualization of our proposed voting scheme for depth fusion to demonstrate the impact of the resulting

weighting compared to a cumulative average.
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Fig. 9: Our proposed progressive voting scheme for depth fusion applied to a series of unreliable samples, followed by relatively stable samples of the real depth. While

a cumulative average of samples slowly adapts to the new samples, our progressive voting quickly discards less reliable data in favor of a compatible value by adjusting

the weighting. If too many new samples fail the compatibility test, i.e., the weight (counter) falls below 0, the depth is set to the new sample and the weight is reset to 1.

4. System Parameters

Tab. 3 shows the system parameters for Niessner13 (VoxelHashing), Lee20 (TextureFusion) and Ha21 (NormalFusion) that

had to be changed in order to successfully process the respective data set with 24 GB of GPU memory. Additionally, the internal

resolution has been appropriately adjusted in the case of the Kinect v2, i.e., to s adapterWidth = 1920 and s adapterHeight = 1080

(pixels). For extensive outdoor scenery, the maximum distance (s sensorDepthMax and s S DFMaxIntegrationDistance) has been

increased to 5.0, in the case of FlowerBed and the synthetic data set BunnySynth to 6.5 (meters). The number of frames to process

(s nVideoFrame) has been set to the total number of frames of the respective data set.

Table 3: Modified system parameters to be able to process the data sets. Parameters that differ from default are printed in italics. s S DFVoxelS ize is the voxel size

(default: 0.004) in meters that was increased until the respective data set could be successfully processed with 24 GB of GPU memory. s texPoolNumPatches is the

minimum number of required pre-allocated texture tiles for the respective data set, whereas s hashNumS DFBlocks is the number of required pre-allocated voxel

blocks. The size of a texture tile was kept at the default value s texPoolPatchWidth = 4 (pixels) for all data sets.

s SDFVoxelSize s texPoolNumPatches s hashNumSDFBlocks

Niessner13 Lee20 Ha21 Lee20 Ha21 Niessner13 Lee20 Ha21

Fountain 0.004 0.004 0.004 2 255 237 9 160 400 82 500 51 265 114 600

CoffeeTable 0.004 0.004 0.006 11 209 510 15 738 000 102 000 96 437 103 000

BooksGlobe 0.004 0.004 0.004 1 630 512 2 210 200 12 000 13 564 33 800

VillageModel 0.004 0.004 0.008 8 983 136 16 508 250 140 500 167 278 71 100

BrickWall 0.004 0.008 0.025 7 550 280 15 403 300 1 313 000 627 372 37 700

Memorial 0.004 0.005 0.009 8 644 457 16 724 500 430 000 549 396 217 500

Statue 0.004 0.004 0.010 11 691 649 15 288 000 293 500 295 264 60 550

Cannon 0.004 0.004 0.011 7 074 873 14 325 300 347 500 567 327 107 800

FlowerBed 0.004 0.006 0.014 7 018 407 14 478 000 555 000 586 510 100 700

BunnySynth 0.004 0.004 0.004 2 609 696 4 500 000 66 000 83 560 250 350
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5. Reference Images in High Resolution

Fig. 10 shows the unrefined reference images of each data set in high-resolution (full resolution).
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Fig. 10: The unrefined reference images (initial frames) of the data sets.
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6. Results in High Resolution

Figs. 11 to 13 show the results for the competing methods and our approach in high-resolution (downscaled to 50%, close-ups in

full resolution).
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Fig. 11: Comparison with the 2D method Kluge20 [7]. See also Fig. 10 for a comparison with the unrefined reference image.
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Fig. 12: Comparison with the offline, post-processing approach Fu21 [3]. See also Fig. 10 for a comparison with the unrefined reference image.
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Fig. 13: Comparison with the online scene reconstruction methods Niessner13 [4], Lee20 [5] and Ha21 [6]. See also Fig. 10 for a comparison with the unrefined reference image.
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