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Figure 1: Our neural point-based rendering architecture is particularly suited for scenarious where novel, previously unseen

content is dynamically added to a scene. Le�: simulation of a gradually built up LiDAR-based reconstruction; top-down view of

the novel views’ frustum and frustums of past frames, which are used as input. Although the scene ahead of the camera is

increasingly sparse with distance (center), our architecture manages to render a novel view with remarkable �delty (right).

ABSTRACT

Novel-view synthesis is an ill-posed problem in that it requires

inference of previously unseen information. Recently, reviving the

traditional �eld of image-based rendering, neural methods proved

particularly suitable for this interpolation/extrapolation task; how-

ever, they often require a-priori scene-completeness or costly pre-

processing steps and generally su�er from long (scene-speci�c)

training times. Our work draws from recent progress in neural

spatio-temporal supersampling to enhance a state-of-the-art neural

renderer’s ability to infer novel-view information at inference time.

We adapt a supersampling architecture [Xiao et al. 2020], which

resamples previously rendered frames, to instead recombine nearby

camera images in a multi-view dataset. These input frames are
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warped into a joint target frame, guided by the most recent (point-

based) scene representation, followed by neural interpolation. The

resulting architecture gains su�cient robustness to signi�cantly

improve transferability to previously unseen datasets. In partic-

ular, this enables novel applications for neural rendering where

dynamically streamed content is directly incorporated in a (neu-

ral) image-based reconstruction of a scene. As we will show, our

method reaches state-of-the-art performance when compared to

previous works that rely on static and su�ciently densely sampled

scenes; in addition, we demonstrate our system’s particular suitabil-

ity for dynamically streamed content, where our approach is able to

produce high-�delity novel-view synthesis even with signi�cantly

fewer available frames than competing neural methods.
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1 INTRODUCTION

Novel-view synthesis creates previously unobserved images of a

scene, from camera observations from di�erent angles. As such, it

is an inherently ill-posed problem. Recently, reviving the traditional

�eld of image-based rendering, neural methods proved particularly

suitable for this interpolation/extrapolation task; however, they

often require dedicated and exhaustive training to learn the scene’s

appearance prior to rendering, usually a time-consuming process.

Our goal was to devise a system that is able to produce novel

views of an initially incomplete scene, at interactive rates (i.e., in-

stant novel-view synthesis) and without the requirement of prepro-

cessing the scene beforehand, to enable immediate view generation

as camera data becomes available, for instance in a live streaming

scenario, such as virtual site inspection or chase cams.

Amongst prior art, two major directions have shown promise in

the last years: implicit and proxy-based methods.

Proxy-based methods build upon a traditional approach of image-

based rendering [Shum and Kang 2000] by using a geometry proxy

(commonly a mesh or point cloud) and integrating captured views

into a target view on this proxy. Recent examples of this are Neu-

ral Point Based Graphics (NPBG) [Aliev et al. 2020] and exten-

sions [Rakhimov and Ardelean et al. 2022; Rückert et al. 2022],

as well as Stable View Synthesis (SVS) [Riegler and Koltun 2021].

Implicit methods forgo this direct geometry for a neural implicit

representation (commonly an MLP) and query this representation

for novel views. Best known in this domain are NeRF [Mildenhall

et al. 2021] and their variants [Barron et al. 2021; Turki et al. 2022;

Yu et al. 2021; Zhang et al. 2020].

Recent years witnessed improvements in computational costs of

methods in both classes. This includes the use of generalized feature

encoders [Rakhimov and Ardelean et al. 2022; Riegler and Koltun

2021] or clever data structures [Müller et al. 2022a] to reduce prepro-

cessing time from hours to seconds. Specialized renderers [Rückert

et al. 2022; Schütz et al. 2022] reduce inference time, and learned

scene priors can reduce the number of inputs required for some

methods [Yu et al. 2021]. The above, however, depend on repeated

observations of scene elements for high-quality reconstructions.

We observe that, particularly for interactive applications that re-

quire instant novel-view synthesis in regions where the scene is

just being observed, this poses a major limitation.

To address this, we devise an interactive (thus preprocessing-

free) solution that supports instantaneous novel-view synthesis

even in regions with poor coverage by input frames. It operates in

the geometry proxy domain, directly on point clouds to avoid costly

and potentially unstable meshing [Wol� et al. 2016] and capitalizing

on point clouds being the native representation of 3D reconstruction

methods such as multi-view stereo [Schönberger et al. 2016], RGBD

streams [Keller et al. 2013], or LiDAR scanners [Liao et al. 2022].

Our method employs a neural point-based renderer that largely

follows the design of NPBG [Aliev et al. 2020]. In their original

design, appearance descriptors are optimized in an o�-line process.

In contrast, our approach seeks to work with dynamic input—and

an evolving model—at render time, assuming a SLAM-like setting

in which a (point-based) 3D representation is gradually built up.

As a key contribution of our method, our rendering system

does not simply rely on the fused model representation but also

capitalizes on the availability of original frames close to the target

view to be rendered, by combining the model rendering with a

more image-based approach that recombines these nearby frames

(which we call auxiliary frames) to �ll in higher-�delity information

where a consistent high-resolution model has not yet been built.

Recombination and fusion with a direct (neural) rendering of the

point-based representation is enabled by drawing from work on

temporal supersampling [Xiao et al. 2020], re-applied in our context.

In e�ect, our method is designed to use fewer resources and cap-

turing constraints: new scenes do not require new training (unlike

Aliev et al. [2020] or Rückert et al. [2022]); the method works di-

rectly on sparse point clouds (unlike Stable View Synthesis [Riegler

and Koltun 2021], which requires highest-quality geometry). As a

result, our method works even on dynamic LiDAR or depth-map

streams, allowing on-the-�y novel-view synthesis previously not

possible in neural point renderings. In summary, our paper’s con-

tributions are:

• An instantaneous, high performance method for novel-view

synthesis that compares favorably to the state of the art in

similarly constrained scenarios.

• Novel-view synthesis in previously di�cult or impossible

scenarios, such as live depth map streams.

• An optional temporal feedback loop that reuses previously

rendered novel views to augment the set of RGBD captured

images for improved temporal coherence.

• An open-source implementation of themethod (https://reality.

tf.fau.de/publications/2023/harrerfranke2023inovis/).

2 RELATED WORK

Our work builds upon the state of the art in novel-view synthesis

and point-based 3D reconstruction and rendering, while drawing

from analogies to neural supersampling.

Novel-View Synthesis. Novel-view synthesis is a long-standing

problem with a large body of work in computer vision and graphics.

Early approaches employ image-based rendering, with large activity

in the early 2000s [Kang et al. 2007; Shum and Kang 2000] and

renewed interest with the advance of deep learning models that

have the potential to replace or augment classic pipelines [Tewari

et al. 2020, 2022]. Generally, methods vary in their utilization and

representation of the underlying scene geometry, with light �eld

approaches, for instance, forgoing explicit geometric representa-

tions (e.g., NeRF) while point or mesh-based methods build upon

existing geometry.

Recent implicit methods follow NeRF [Mildenhall et al. 2021]

and use a fully connected network combined with volume render-

ing to optimize a continuous representation. They achieve visually

impressive results but come with signi�cant challenges that sev-

eral follow-up works address: reduction of the number of required

views [Chibane et al. 2021; Yu et al. 2021; Zhang et al. 2020]; im-

provement of rendering speeds [Barron et al. 2021; Chen et al. 2021;

Ne� et al. 2021] and training times [Chen et al. 2021; Chibane et al.

2021; Müller et al. 2022a; Tancik et al. 2021; Turki et al. 2022].

https://doi.org/10.1145/3610548.3618216
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In the domain of explicit scene representations (mainly point

clouds and meshes), recent advances came through neural ren-

dering techniques, that fall into two categories: approaches that

use individual, scene-based over�tting, and those that generalize

across scenes. For scene-speci�c methods, object texture optimiza-

tion [Thies et al. 2019] and per-point descriptors [Aliev et al. 2020;

Kopanas et al. 2021; Rückert et al. 2022] show great results inte-

grating neural methods and explicit geometry. The generalizing

methods partially follow in the footsteps of image-based render-

ing [Chaurasia et al. 2013; Debevec et al. 1998] and include pixel

blending with learned factors [Hedman et al. 2018], integration

of encoded features into blending [Riegler and Koltun 2020, 2021]

and interpolation of nearby views with transformer-based architec-

tures [Wang et al. 2021]. Lastly, feature-encoding of input images

before aggregation into points [Rakhimov and Ardelean et al. 2022]

proved successful.

Similar to implicit techniques, however, these explicit methods

feature lengthy training times [Aliev et al. 2020; Rückert et al. 2022;

Thies et al. 2019], challenging inference speeds [Riegler and Koltun

2021; Wang et al. 2021] and generally depend on a-priori scene

completeness, prohibiting use on live camera streams.

Closest to our scope, recent work that bridges implicit and

explicit approaches tackles the task of online scene reconstruc-

tion [Clark 2022; Müller et al. 2022b; Sucar et al. 2021]. These involve

training a reconstruction and creating respective novel views dur-

ing capture time; however, time to image (training plus rendering)

is still in the order of seconds for high-�delity images. Furthermore,

faithful reconstructions require repeated observations of the same

objects.

Our work tackles these shortcomings, supporting incomplete

scene observations, generalized feature encoding without scene-

speci�c pretraining, featuring fast inference without online train-

ing.

Capturing and Rendering Point Clouds. Point clouds can be cap-

tured using a variety of methods, the most common being RGBD

cameras with depth projection or fusion techniques [Dai et al. 2017b;

Keller et al. 2013; Whelan et al. 2016], LiDAR-based mapping (of-

ten present on cars [Liao et al. 2022]) or multi-view stereo tech-

niques [Schönberger et al. 2016].

The advantages of point clouds, apart from the ease of capturing,

include quite precise (if sparse) data points as well as many estab-

lished fast rendering methods [Schütz et al. 2021, 2022, 2019] and

well-established hole-�lling neural networks proven in novel-view

synthesis tasks [Aliev et al. 2020; Kopanas et al. 2021; Rakhimov

and Ardelean et al. 2022; Rückert et al. 2022]. This combination

forms a foundation of our proposed method.

Closest to our method is NPBG++ [Rakhimov and Ardelean et al.

2022], which integrates features from all input images (via a gener-

alized feature encoder) within a point cloud that is then neurally

interpolated to render novel views. It involves a few minutes of

preprocessing and renders novel views in real time. In contrast to

NPBG++, however, our method does not require preprocessing and

is not bound to a-priori scene completeness; moreover, its lower

per-point memory footprint improves scalability to larger scenes.

Neural Supersampling. A special case of novel-view synthesis is

real-time (spatio-temporal) upsampling of lower-resolution inputs,

with prominent use in video upsampling [Kappeler et al. 2016;

Liu and Sun 2013; Tao et al. 2017] and, more recently, real-time

upsampling for video games, such as Nvidia’s DLSS [Edelsten et al.

2019]. Recent approaches increasingly use neural networks to up-

scale the input stream [Liu et al. 2022]. Another class of solutions

achieves temporal supersampling mostly via temporal information

projected to current frames [Guo et al. 2021; Thomas et al. 2022;

Xiao et al. 2020].

A core insight of our paper is that upsampling from coarse data

solves a similar problem as novel-view synthesis from a sparse

point cloud, in that both aim to �ll in missing information; and that

recent solutions for both rely on feature encoding and interpolation

stages.

In this paper, we draw from previous research in temporal su-

persampling and transfer insights from Xiao et al. [2020]’s neural

supersampling feature encoding and feature reweighting concepts

for a fast and lightweight novel-view synthesis pipeline that is able

to self-correct most common warping artifacts.

3 METHOD

Our method employs a neural point-based renderer that largely

follows the design of NPBG [Aliev et al. 2020]. Their scene repre-

sentation are 3D points, each holding a low-dimensional feature

vector that describes the view-depend appearance and local geom-

etry of each point. (Their feature encoding is learned as part of

an exhaustive preprocessing of the scene.) For a given viewpoint,

these 3D points are sparsely rendered at multiple resolutions and

transformed into a dense, high-resolution RGB rendering using a

multi-scale U-Net.

In their original design, appearance descriptors are precomputed

in an o�-line process, and the multi-resolution renderings to be fed

into the U-Net are rendered in feature space. In contrast, our ap-

proach seeks to work with dynamic input—and an evolving model—

at render time. Accordingly, and with the convenient side-e�ect

of memory savings that allow for larger scenes, point and image

attributes are kept in the original RGB(D) format for longer, and fea-

ture vectors are extracted only on the �y, see our pipeline overview

in Fig. 2. (The encoder is pre-trained using a class of similar input

scenes.)

In general, we assume a SLAM-like setting, in which a (in our

case point-based) 3D representation is gradually built up while

additional RGBD data is progressively received and fused into the

model.

As a key contribution of our method, our rendering system

does not simply rely on the fused model representation but also

capitalizes on the availability of original frames close to the target

view to be rendered, by combining the model rendering with a more

image-based approach that recombines these nearby frames to �ll

in higher-�delity information where a consistent high-resolution

model is not yet available. Notably, these additional frames (we call

them auxiliary views) may contain only sparse depth data (as, e.g.,

in the case of LiDAR sensors) but are assumed to be dense in RGB.

While similar in spirit to traditional image-based rendering and

texturing [Buehler et al. 2001; Schönberger et al. 2016], we blend

feature descriptors rather than RGB values and borrow architectural

aspects from the design of Xiao et al. [2020].
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Figure 2: Our rendering pipeline extends the approach of NPBG; novel components are highlighted in blue. From a set of

auxiliary (RGBD) images from nearby input (or previously rendered) views, relevant views are selected and encoded. Guided

by a rendering of the point cloud, they are warped and reweighted to mitigate occlusion and ghosting e�ects. Subsequently,

features from the multi-resolution rendering of the point cloud are extracted, and these bu�ers are passed to the reconstruction

network for the �nal rendering. The pipeline is trained end-to-end against ground truth images.

In concrete terms, for every output (target) frame, our system

determines nearby original camera images (Sec. 3.2), converts them

into feature space (Sec. 3.3) and warps them into that target frame

(Sec. 3.4). The warp is assisted by depths of the so far accumulated

3D model. The di�erent source pixels are blended using a reweight-

ing network [Xiao et al. 2020], which leads to superior blending

results over explicit weighting functions and hole-�lling strategies

(Sec. 3.5). Subsequently, features from the multi-resolution render-

ing of the point cloud are extracted (Sec. 3.1) and combined with the

blended (feature) images before being passed to the reconstruction

network for rendering (Sec. 3.6).

Any (supervised) pre-training takes place using this complete

pipeline (Sec. 4). In Sec. 5 we test the system both with previously

observed data (in order to allow comparison to previous works) as

well as with dynamic input outside the training dataset, a scenario

not normally considered by previous work.

3.1 Target View Feature Extraction

The backbone of our novel-view rendering architecture is an NPBG-

inspired neural point-based renderer that roughly divides into two

parts: sparse multi-resolution encoding of a target frame (which we

discuss here); and U-Net-based neural rendering that transforms

this representation into an RGB rendering (Sec. 3.6).

First, we render the raw (RGB) point cloud with a depth-testing,

one-pixel per point OpenGL hardware renderer to obtain a sparse

RGBD image. In a second step, we then use a feature encoder with

the same structure as the auxiliary view’s feature extractor (Sec. 3.3),

except a �lter number of 32 and output of 8 features derived from

the rendered sparse point cloud. On output, the resulting features

are concatenated again with the network input.

These two steps are repeated for every resolution level fed into

the multi-scale rendering U-Net described (Sec. 3.6). In our exper-

iments we use three lower-resolution point renderings, at 1/2, 1/4,

and 1/8.

The multi-res structure serves two purposes: more general oc-

clusion features can be learned from these coarser representations;

during training, the feature extractor sees a more varying range of

point distributions, making the feature extractor more robust.

3.2 Auxiliary View Selection

We collect =views auxiliary images, taken from nearby captured

RGB images. Depending on the sensor types and acquisition sys-

tem, captured depth images are used (RGBD scenes), or (sparse)

corresponding depth samples are generated from the LiDAR data

using the same point renderer we use in Sec. 3.1. Either depth

representation is used without any further preprocessing.

We generally determine the =views nearest views by selecting

those that minimize the following metric based on a positional

factor 5? and a view directional factor 53 :

5? = 0.5 +max
(

∥ ®? − ®?target∥
2, 0.5

)

, (1)

53 = 1 −

(

®E

∥®E ∥

)⊤

·
®Etarget

∥®Etarget∥
. (2)

Here, ?target and Etarget are the position and view direction of the

target view, and ? and E are the auxiliary bu�ers’ position (view-

point) and view direction. In general, positions close to the target

position will always contribute more, thus scoring lower—as do

similar view directions. Combining these two factors then results

in a similarity score B , where lower values indicate better view

choices:

B = 5? (1 + U 53 ) . (3)

Hereby, U is used to balance these two factors, with larger U pri-

oritizing tighter view directions. We use U = 100 for a trade-o�

that penalises distances of around 10 meters similarly to 90-degree

view o�sets. Views are always ordered from best to worst, thus

guiding the network to put more emphasis on the closest view. The

resulting view weighting and ranking in spirit resembles traditional

view-dependent rendering approaches [Buehler et al. 2001]; more
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point rendering no environment encoding environment encoding closest ground truth

Figure 3: Comparison of environment encoding vs no environment encoding vs point rendering vs closest ground truth.

Environment encoding signi�cantly improves image quality in areas unoccupied by points. Even without environment

encoding, the surrounding areas of points are �lled with information, showing the capability of encoding a patch around a

pixel into a feature tensor which is then warped, using a sparse point rendering.

complex view selection schemes, such as ORB-SLAM [Campos et al.

2021], could be used but were deemed to o�er diminishing returns

within the scenarios at hand.

For some datasets, varying quality of nearby views could lead to

moderate �ickering in the output video. In these cases, adding the

previously rendered view to the set of candidates for auxiliary views

helps mitigate �icker: that view often scores highly on the nearby-

view metric and, if included amongst the =views frames, improves

temporal coherence across output frames. For training, however,

previous frames are never considered; our pipeline is robust enough

to easily handle a previously rendered frame as input, considering

that it is fully compatible with the original RGBD-captured frames.

3.3 Feature Encoding for Auxiliary Views

After view selection, a lightweight feature encoding network trans-

forms RGBD pixels into 12-dimensional feature vectors. Note that

the encoder captures spatial context as well, so that even under

sparse (point-wise) reprojections, as applied in the following sec-

tion, relevant spatial information is preserved.

We use a three-stage gated convolution setup with ReLU acti-

vations and a �lter number of 16. (Xiao et al. [2020] use 32; our

experiments showed no change in training loss when going from

16 to 32, so we went with fewer weights.)

Also in contrast to Xiao et al., we use gated convolutions [Yu

et al. 2019], which have learnable masks for scaling inputs. As

our auxiliary images’ depth maps are sparsely �lled, passing this

map to gated convolutions allows the feature encoding network

to identify areas which can not be correctly warped (due to miss-

ing depth) and to amplify this information to adjacent, warpable

pixels. Thus, gated convolutions in our case allow for a form of

“inverse” masking, where information warping is able to account for

sparse depth maps similarly to small-scale attention mechanisms

in transformers [Vaswani et al. 2017]. Lastly, this allows us to use a

smaller number of �lters, which generally improves performance

and reduces the risk of over�tting.

3.4 Warping

For each auxiliary view, both features and RGBD are warped to the

target view: for each point of the point cloud visible from the target

perspective, its pixel value (RGBD plus feature vector), at its back-

projection into the auxiliary view, is copied to the new location.

Each auxiliary image is warped separately and the resulting images

are mixed together in later pipeline steps.

Pixels that do not feature rasterized points miss warped informa-

tion. These areas are optionally augmented bywarping the auxiliary

image onto a distant background plane behind the point proxy ge-

ometry. This helps to greatly improve image quality in areas that

do not feature points, especially for far away areas (e.g., sky or

far-away buildings). This environment handling results in those

areas being �lled with plausible content from the background, as

the disparity is barely noticeable at these large distances, see Fig. 3.

Then, the RGBD images from the auxiliary views and the original

rendering are passed to the reweighting network, which computes

a pixel-wise weighting factor for each view to scale the features.

3.5 Reweighting

This step helps to lessen the e�ect of disocclusion and warping arti-

facts. Reweighting mostly follows the work of Xiao et al. [2020]. The

reweighting network takes RGBD information from both warped

auxiliary views and the rendered target view to determine per-pixel

weights for all =views auxiliary images as output. The warped image

data is weighted accordingly by multiplying the weights with the

auxiliary features. The reweighted data is concatenated and passed

to the front layer of the neural render network.

The network consists of three blocks of convolution and ReLU

with �lter numbers of 32, outputting =views multiplication factors,

scaled to [0, 10] as stated in the original paper [Xiao et al. 2020].

3.6 Neural Render Network

The neural rendering network outputs the �nal stable novel view

of the requested extrinsics and intrinsics. It is a U-Net with �ve

levels, similar to established point-cloud rendering inpainting net-

works [Aliev et al. 2020; Rückert et al. 2022]. Each downsampling

block uses a gated convolution and max pooling layer, while each

upsampling block uses bilinear upsampling and a gated convo-

lution with skip connections between the blocks. Our �lters are

32, 32, 32, 32, 32, which provided the best trade-o� between quality

and performance and converge faster than deeper networks.

We input the full-resolution encoded features of the target and

auxiliary views to the network, with the lower-resolution target

feature maps progressively being added to their respective down-

sampling blocks.
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4 TRAINING METHODOLOGY

Scenes. Tab. 3 summarises the scenes used for training (and eval-

uation), which cover a wide range of scenarios and setups, including

depth capturing through LiDAR, multi-view stereo, and RGBD cam-

eras; various indoor and outdoor environments, as well as inside-out

and outside-in capturing setups.

We use the Playground and M60 scenes from the commonly

used Tanks and Temples dataset [Knapitsch et al. 2017], which has

depths estimated with multi-view stereo. Several sequences from

Kitti-360 [Liao et al. 2022] o�er sequential recordings of a driving car

captured with LiDAR, which we modi�ed to simulate the order in

which depth samples and RGB images would come in within a live

LiDAR system (based on �eld of view and distance of the original

Kitti 360 point cloud). Additionally, we used our own captured

scene, O�ce, using a portable indoor LiDAR, with capture positions

roughly 2m apart. Extensive preprocessing yielded a cleaned-up

point cloud with a resolution of 5mm.

For live-RGBD scenes, we use the ScanNet [Dai et al. 2017a]

and Redwood [Choi et al. 2016] scenes, which are captured RGBD

streams for which we estimated positions on the �y with ORB-

SLAM [Campos et al. 2021] where no poses where present. Apart

from that, we captured custom outdoor scenes using a stereo camera,

featuring sequential traversal of environments without repeated ob-

servation of the same objects. We obtained the poses and keyframes

for these scenes with Snake-SLAM [Rückert and Stamminger 2021].

For all live-RGBD scenes, we create timestamped point clouds from

the last 10 images in the sequence.

Training. Training is generally initialized with a network pre-

trained on the O�ce scene, owing to its large spatial extent com-

bined with large baselines that prime training against ghosting.

Subsequently, networks are re�ned for individual classes of scenes,

without temporal feedback frames (using captured data only). Test-

ing, naturally, always takes place on previously unseen data.

Loss. As training loss, we use a mix of VGG16 [Johnson et al.

2016] and SSIM [Wang et al. 2004]. The VGG loss is a common

feature-based function, which is especiallywell suited in our case (as

seen in Sec. 5.4). However, regular patterns can appear on surfaces,

which can be removed by adding a small amount of SSIM loss. Our

�nal loss function is the following (Fssim = 0.25 andFvgg = 1):

loss(G̃, G) = Fssim · (1 − SSIM(G̃, G)) +Fvgg · VGG16(G̃, G) (4)

Inference. Our method is particularly e�ective when applied

to live datasets that supply a steady stream of new images, such

as Kitti-360, Redwood, ScanNet, and our custom outdoor scenes.

The images are encoded during inference and selected based on

their capture position and rotation, enabling us to choose images

without having to store them in memory. This makes our approach

well-suited for integration with a traditional streaming approach,

which only holds a subset of images in memory, thereby minimizing

memory usage.

Additionally, we only store RGB data in our point cloud, com-

pared to competing methods such as NPBG++ [Rakhimov and Arde-

lean et al. 2022], who store largemulti-channel descriptors per point.

All in all, our rendering is lightweight and is easily interactive

(∼50ms/frame rendering time on Kitti and Redwood datasets).

5 RESULTS

In the following, we present our evaluation of Inovis comparing to

related work, as well as ablation studies to give insights on what

makes our method e�ective. For qualitative results, see Fig. 7.

5.1 Qualitative Evaluation

We compare our approach to established neural novel view synthe-

sis techniques. These include Stable View Synthesis (SVS) [Riegler

and Koltun 2021], NPBG++ [Rakhimov and Ardelean et al. 2022],

IBR-net [Wang et al. 2021] and ADOP [Rückert et al. 2022].

Table 1: Approximate pre-

processing and render times

(ScanNet 1296×968).

preprocess rendering

ADOP ~ 6 h ~ 13 ms

IBR-Net < 1 min ~ 2 min

NPBG++ ~ 1 min ~ 100 ms

SVS ~ 4 h ~ 3 s

Inovis (ours) - ~ 131 ms

For our method, a subset of

scenes is used to train a net-

work tuned to one scene type.

Baseline methods that have

generalizing capabilities (all ex-

cept ADOP) were trained on

the whole Redwood and Scan-

Net datasets, except the unseen

evaluation scenes. ADOP was

individually trained on each

evaluation scene to allow for

a comparison. We accumulate

metrics over �ve unseen scenes

from ScanNet (0, 20, 30, 40, 50, 80), �ve Redwoodmotorcycles (05489,

05751, 05984, 06186, 06190) and three Redwood sofas (00577, 05477,

07294). The results of this evaluation can be seen in Tab. 1, Tab. 2

and Fig. 6. In terms of quality, we consistently outperform NPBG++,

Table 2: Comparison with SVS,

IBRnet, ADOP and NPBG++. Ex-

cept for ADOP, no scene-speci�c

�netuning is performed.

PSNR↑ LPIPS↓ SSIM↑

M
o
to
rc
y
cl
e ADOP 20.34 0.236 0.585

IBR-Net 22.93 0.193 0.730

NPBG++ 14.70 0.543 0.497

SVS 19.21 0.273 0.658

Inovis (ours) 20.63 0.195 0.698

So
fa

ADOP 24.26 0.172 0.598

IBR-Net 27.45 0.159 0.809

NPBG++ 17.02 0.392 0.637

SVS 22.35 0.253 0.728

Inovis (ours) 24.19 0.187 0.769

Sc
an
N
et

ADOP 24.78 0.208 0.694

IBR-Net 24.96 0.248 0.802

NPBG++ 20.90 0.396 0.758

SVS 23.76 0.316 0.796

Inovis (ours) 22.78 0.309 0.792

while they show slightly

better render times. SVS

shows similar results

with signi�cantly slower

rendering. ADOP and

IBR-Net usually provide

better metrics, but neither

method in its current form

is suitable for online novel

view synthesis: ADOP

requires scene-speci�c

training (~6h) and IBR-Net

shows long rendering

times for single images

(~2 min). In general, our

approach provides state-

of-the-art results with

fewer limitations than

competing approaches.

To further demonstrate

generalization, we used a

subset of scenes from the

Kitti dataset to train a net-

work that was also used to

create all evaluation images of our own custom dataset (Fig. 8

and supplementary video). While these are also outdoor scenes,

their characteristics are di�erent, further corroborating generaliz-

ing power.
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Table 3: Evaluation datasets. We use a wide range of possible scenarios to evaluate our

approach. Scene tagged with live indicate an expanding live dataset.

Dataset # Points Point Cloud # Image Image Capturing Environment
per scene capturing per scene Resolution Methodology Type

Tanks & Temples ~10M MVS ~300 1920 − 2144 × 1088 outside-in various
Kitti-360 ~8M Live-LiDAR ~630 1408 × 352 sequential outdoor driving
ScanNet ~30M Live-DepthCam ~120 1280 × 960 inside-out indoor rooms
Redwood ~35M Live-DepthCam ~150 640 × 480 outside-in object scans
O�ce ~70M LiDAR ~700 960 × 544 inside-out indoor rooms
Custom 0.5M-40M Live-StereoCam 40-250 1280 − 1920 × 720 − 1080 sequential outdoor scans

Table 4: Performance numbers in ms:

inference (Inf), point rendering (PR)

and total rendering time (T) on single

scenes.

Dataset Inf PR T

Kitti (3.6M pts, 1408×376) 53.8 1.2 56.2
ScanNet (70M pts, 1296×968) 120.6 9.7 131.7
Redwood (36M pts, 640×480) 36.7 9.3 47.4
O�ce (40M pts, 960×540) 58.9 12.9 73.1
Custom (0.6M pts, 1280×720) 88.3 0.6 90.2

5.2 Performance Evaluation

Training. our network end-to-end takes around ∼15–24h on an

NVIDIA V100, depending on dataset size and resolution.

Rendering. Training is done once per scene type, hence runtime

performance depends on rendering (i.e., novel-view synthesis) only,

which highly depends on the number of auxiliary views (cf. Sec. 5.4)

and resolution. See Tab. 4 for an overview of rendering times for

di�erent datasets, obtained with an NVIDIA A5000. We measured

interactive frame times of up to 20 fps for 960×540 images and

∼11 fps for 1280×720 images. Even for large point clouds (tens of

millions of points), inference still dominates rendering time, but

di�erences in visible point count cause variations in total rendering

time, as illustrated in Fig. 4.

To assess potential for streaming scenarios, we compare our ap-

proach against two competing methods: ADOP [Rückert et al. 2022],

as a high-quality point-based approach with very fast neural ren-

dering; InstantNGP [Müller et al. 2022a], which features remarkable

real-time training of a NeRF, especially when applied on outside-

in scenarios. Considering that neither ADOP’s nor InstantNGP’s

publicly available implementations were designed to incremen-

tally ingest streamed content, we devised an evaluation regime in

their favor that, for a selection of time stamps within a stream of

keyframes, grants each algorithm combined training and rendering

time roughly equivalent to the time passed until that timestamp;

see Fig. 8 for the results. Our approach outperforms both methods,

as no training is needed and produces high �delity images from the

start, while both compared methods only gradually improve visual

quality with increasing time budget. We outperform both methods

in all comparisons w.r.t. time-to-image (training plus rendering)

and achieve our highest quality even within the minimum time

budget.

5.3 Use-Case Evaluation

Our method maps well on di�erent categories of problems rarely

tackled in novel-view synthesis approaches.

Live LiDAR Car Data. For live sequences from driving scenarios,

take a look at Fig. 7 and Fig. 8 as well as the supplemental video.

Using the car dataset Kitti-360, where previously unseen content

continuously emerges in front of the car-mounted camera, we show

how our approach excels in synthesising views in regions where

the available data is sparse. As long as the captured data is within

a similar class to the scene our model has been trained on, we are
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Figure 4: Performance over time during traversal of the o�ce

scene (960×540, 4 auxiliary views), featuring a large point

cloud (40Mpoints). Due to the large point count, point render-

ing time is signi�cant. Inference time remains constant while

rendering time varies with the number of visible points.

able to instantly create novel views from a small set of captured

images and the current point cloud.

Large Point Clouds. Large point clouds can be challenging for

neural methods. In contrast to that, our method easily handles large

point clouds, as seen with the O�ce dataset having 75M points.

Results for this scene can be seen in Fig. 7 and the supplementary

video.

Sparse Point Clouds. Since our approach encodes the surround-

ings of pixels into feature vectors and warps these vectors instead

of colors, we can augment comparatively sparse point data with

image information, as shown with the Kitti-360 dataset, which fea-

tures relatively sparse LiDAR-captured point clouds. See Figs 3, 7,

and 8, and the supplementary video.

Live RGBD Data. Our approach is a natural �t for live-streamed

RGBD data. Provided a SLAM computes camera poses in real time

and a network for a similar scene has already been trained, Inovis

creates new images in the matter of dozens of milliseconds without

any scene-speci�c training.

5.4 Ablation Studies

In this section, we provide studies to show the root of the e�ec-

tiveness of our method. Variants were evaluated by using our loss

function (Sec. 4) on the hold-out set of captured frames.

Feature Extraction. Our pipeline encodes small patches of auxil-

iary view information into feature vectors, allowing this informa-

tion to be transferred to novel views, as seen in Fig. 3. As described

in Sec. 3, we use gated convolutions, which usually provide state-

of-the art hole�lling capabilities. In contrast to that, we use their
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Table 5: Loss by convolution

type of feature encoding of

auxiliary images, by dataset.

Dataset basic conv. gated conv.

O�ce 0.1867 0.1798

Kitti-360 0.5807 0.5561

masking abilities inversely for

auxiliary image encoding, with

the sparse depth map guiding in-

formation ampli�cation. For re-

sults of this, see Tab. 5. In sparse

point cloud scenarios (such as Li-

DAR in cars) this addition pro-

vides great improvement in the

relevant (usually small) areas,

thus increasing training convergence and providing improvements

of up to 5% overall.

Number of Auxiliary Images. We use a comparatively small num-

ber of auxiliary views compared to competing methods, which

for our setup su�ces. As seen in Fig. 5, using more auxiliary im-

ages shows diminishing results especially considering the increased

computation time per frame, which increases linear with number

of images used. Four seems the best tradeo� between quality and

inference speed. In our experience, using four images also helps to

improve quality when deviating from ground truth views, although

two images already show a similar loss compared to four images.

Loss function. We compare di�erent loss functions commonly

Table 6: Loss functions on the

O�ce dataset. NSS indicates the

loss function used by Xiao et

al. [2020].

Loss Function PSNR↑ LPIPS↓ SSIM↑

Train w. MSE 24.14 0.141 0.891

Train w. SSIM 24.16 0.110 0.917

Train w. VGG 23.85 0.090 0.913

Train w. NSS 24.27 0.102 0.919

Train w. Ours 24.22 0.093 0.917

used in novel view synthe-

sis methods in our method.

For results see Tab. 6. Numer-

ically, our metric performs

favorably, only slightly sur-

passed by the loss func-

tion of Neural Supersam-

pling [Xiao et al. 2020]; sub-

jectively, however, we �nd

that our metric provides

higher color accuracy for

our datasets, suggesting that

real-world datasets require

di�ering loss compositions

than synthetic data.

6 DISCUSSION

Input Quality. Our method relies on good quality captures to

produce high-quality results. This includes the capture positions of

the images not be too far apart in order for the method to work ef-

fectively. In general, regions without overlap from auxiliary images

show poor quality due to missing information to be interpolated.

We fall back on averaged pixel colors in our point cloud rendering,

but these can exhibit artifacts.

Temporal Stability. While our method is able to handle continu-

ous streams of new images, it may still struggle with scenes that

have signi�cant changes over time. E.g., sigini�cant changes of

auxiliary images result in visible �ickering, as can be observed in

the supplementary video.

Camera Intrinsics. Our pipeline is trained to produce output

images with similar camera intrinsics and resolutions as the input

images. Thus, if encoded patches are interpreted with di�erent
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Figure 5: Loss and rendering performance vs auxiliary images

used.

camera characteristics, the output image can be blurred or squished.

Streaming Scenario. In principle, to minimize memory footprint

during view synthesis, only a small candidate set of nearby auxiliary

images as well as a point cloud of the current vicinity would have to

be kept in GPU memory. Further (nearby) images and points could

be dynamically streamed in and swapped out during run time;

however, in setups with limited transfer bandwidth, larger sets

should be kept in memory to avoid temporarily decreased quality

until the newer nearby data arrives. While our demonstrator does

not include such a streaming mechanism, we argue that our results

are indicative of favorable performance under this regime.

7 CONCLUSION

We presented a system for neural novel-view synthesis. We adapted

a supersampling architecture, which resamples previously rendered

frames, to instead recombine nearby camera images in a multi-view

dataset. The resulting architecture gains su�cient robustness to sig-

ni�cantly improve transferability to previously unseen datasets. In

particular, our system enables novel applications for neural render-

ing where dynamically streamed content is directly incorporated

in a (neural) image-based reconstruction of a scene. We show that

our method reaches state-of-the-art performance when compared

to previous works that rely on static scenes; in addition, we demon-

strated our system’s performance for dynamically streamed content,

a scenario not accessible to previous works in neural rendering.

Ultimately, we believe that our approach is opening up a number

of valuable applications, including wide-baseline video stabilisation,

VR conferencing with free viewpoint control within the remote

scene, virtual car mirrors, etc.
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Figure 6: Visual comparison of Inovis with NPBG++, SVS and IBR-Net. Our method produces visually similar results to IBR-Net,

while outperforming NPBG++ and SVS.
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Figure 7: Neural Renderings of our approach for three datasets: the O�ce dataset and the Tanks and Temples dataset, both

containing high quality point clouds and the Live LiDAR dataset Kitti-360. Our method produces high quality neural renderings

for all datasets.
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Figure 8: Comparison of streaming capabilities between ADOP, Instant-NGP and Inovis (Ours). Each method is provided with

di�erent time budgets that match the data capture time frame of the respective dataset, e.g., a time budget of 15s for creating

a novel view from 15 keyframes. (column 1–3). The last column contains the results for unlimited time budgets. Both used

datasets resemble a sequential trajectory through a scene, rather than continuous observation of a single object: walking past an

excavator (Custom scene; top); a car driving through a neighborhood (Kitti-360; bo�om). Training and rendering times, which

result in total time to image by adding up, are displayed in each image. For all examples shown, our system was pre-trained on

a subset of Kitti-360 scenes, excluding the one on display. Without further training, our network generalizes well to the shown

scenes, thus limiting the total time to image to mere rendering time (∼50–100ms) and resulting in the exact same image, no

matter the time budget. ADOP and Instant-NGP gradually improve with increasing time budget but do not reach our quality as

long as a time limit is in place.
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