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Abstract

Automatic reconstruction of fragmented objects is of great interest in archaeology, where artefacts are often found
in a fractured state. In this paper, we focus on the problem of automatically agglomerating clusters of fragments
from previously determined pairwise matches. Common to any automated cluster agglomeration technique is the
challenge of error accumulation, making it increasingly difficult to discern false from true matches as the assembly
grows. Many assembly algorithms therefore introduce a global relaxation phase to distribute alignment errors
evenly across the cluster, minimising major inconsistencies. Nevertheless, error accumulation limits the problem
size automated assembly systems can handle in practice. In this paper we show how two careful modifications of
the traditional relaxation scheme help lift this limit considerably. In contrast to previous work, we integrate global
relaxation earlier, in the search phase of the assembly process. In addition, we do not fix connections between
assembled fragments, but rather leave them flexible throughout the assembly. By modifying two representative
assembly algorithms, we demonstrate the effectiveness of our approach. Using the example of a challenging fresco
dataset, we show that these modifications achieve larger reconstruction sizes than traditional strategies.

Categories and Subject Descriptors (according to ACM CCS): I.3.5 [Computer Graphics]: Computational Geometry
and Object Modelling—Geometric algorithms, languages and systems

1. Introduction

Automatic reconstruction of fragmented objects is of great
interest in archaeology, where artefacts are often found in a
fractured state, and the effort of manually putting the bro-
ken pieces together represents a significant amount of time
and resources. Previous work has contributed methods to ac-
quire object fragments efficiently, identify pairwise matches
between fragments, and automatically assemble them into
larger clusters. In this paper, we focus on aspects of the final
cluster agglomeration phase.

Common to any automated cluster agglomeration tech-
nique is the challenge of error accumulation, which makes
reconstructing objects from a large number of fragments in-
creasingly difficult. Minute alignment errors between adja-
cent fragments add up, eventually leading to gaps and in-
terpenetration of fragments throughout the cluster, prevent-
ing pieces from fitting together properly [HFG∗06]. Many
assembly algorithms hence introduce a global relaxation
phase, distributing alignment errors evenly across the cluster
to minimise major inconsistencies.

Reducing such inconsistencies is more than a cosmetic
task: in practice, matches between fragments cannot be iden-
tified with absolute certainty, and incorporating global con-
sistency criteria improves the discrimination between true
and false matches. By recurrently relaxing the active cluster
before considering additional fragments [GMB04, ZZH08,
HFG∗06], existing assembly systems keep alignment errors
of true matches low and maintain match discriminability also
for larger clusters. Even with global relaxation, however, er-
ror accumulation increases as the cluster grows, eventually
rendering true and false matches indistinguishable. This ef-
fect limits the problem size automated assembly systems can
handle in practice [ZZH08, Str09].

In this paper we show that two careful alterations of the
traditional relaxation scheme help lift this limit considerably.
Instead of relaxing the active cluster first and then evaluating
potential fragment additions, we incorporate global relax-
ation in the match evaluation itself, assessing each potential
addition by considering alignment errors after global relax-
ation with the match candidate. Although this approach of
course impacts the algorithm’s speed, we mitigate this fac-
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tor by using an efficient global relaxation scheme so that the
trade-off with increased cluster sizes becomes worthwhile.
In addition, we differ from many previous approaches by
maintaining the fragments as separate entities for the entirety
of the assembly process, rather than fixing well-established
subclusters, which is a common choice to reduce the costs
of relaxation. Together, these modifications build a search
strategy that puts more emphasis on global consistency than
existing approaches.

By modifying two representative assembly algorithms, we
demonstrate the effectiveness of our approach. We show re-
assembly results for a shattered fresco that has been custom-
made for a previous study. Note that wall paintings repre-
sent a class of physical objects that usually exhibit a two-
dimensional fracture topology, as do tablets, parchments, pa-
pyri, and pottery. As such an important object class in ar-
chaeology, we argue that the insights gained in this work
extend to three-dimensional fracture topologies as well.

2. Previous Work

Much work has been done on the problem of automatically
reassembling fragmented objects, starting with Freeman and
Garder’s [FG64] work in encoding and matching arbitrary
jigsaw puzzle piece contours.

The reconstruction of an artefact can be divided into
two main phases: local assembly and global assem-
bly [HFG∗06]. Local assembly is concerned with finding
matches between pairs of fragments, or with searching for
matches in the immediate neighbourhood of a fragment.
Global assembly is the task of taking pairwise match hy-
potheses and creating as complete a solution as possible to
the reconstruction problem.

2.1. Local Assembly

Most reassembly work to date has dealt primarily with meth-
ods of determining pairwise matches between fragments.
There is a wide variety of techniques employed in this en-
deavour, including comparisons of shape, colour, texture, or
more abstract features. Geometric methods commonly focus
on the 2-D contour of the fragments, or on the surface area
of the fragment edges. Pictorial match detection commonly
looks at the colours around the edges of the fragments, or
some analysis of the colour of the entire fragment surface.
The material properties of the fragment sometimes play a
role in matching algorithms [PKT02]. An in-depth discus-
sion of pairwise matching techniques is outside the scope of
this paper, but good explanations of the subject can be found
in [WC08], [MK03], and [FSTF∗11].

Independent from the particular matching technique, how-
ever, any form of local matching remains an error-prone pro-
cess. Apart from natural sources of noise, such as erosion
and discolouration, the process of digitisation introduces

sampling errors into the fragment models. When comparing
scanned fragments, these errors can cause both false and true
matches to score equally well on a particular matching met-
ric. As a result, virtually any successful automated assembler
incorporates global criteria as well.

2.2. Global Assembly

One of the major difficulties of reassembly is that the prob-
lem scales poorly with the number of fragments being as-
sembled, due to the combinatorial explosion of potential
assemblies. Hence, global assembly algorithms tend to use
greedy approaches that iteratively merge or grow clusters in
the search for a solution that maximises a scoring function.

Typically, assembly systems model the process as a graph,
with nodes representing fragments and edges representing
candidate matches between pairs of fragments. Although the
minimum reconstruction possible is a spanning tree of the
connection graph, it is desirable to try to include as many
matches as possible, since it is not guaranteed that all cor-
rect matches between fragments will be found. Assembly
can take the form of constructing a connection graph from
the candidate matches, and then solving for the most glob-
ally consistent set of edges [PK03]. When there are loops in
the graph, it becomes easier to select which edge between a
pair of fragments is the correct one, if any.

Hierarchical Clustering Hierarchical clustering generally
takes the form of a greedy, best-first merging of pairwise
matches. Similar to the traditional algorithmic technique of
“divide and conquer”, where a problem is subdivided recur-
sively until it is simple enough to be solved directly, hier-
archical clustering reduces the fragment count by replacing
two matching fragments with one new fragment, effectively
creating a “merge and conquer” strategy. The reconstruction
begins with a pairwise match, typically the highest-scoring
one. This match is then merged, and a new fragment is cre-
ated to replace the two matching fragments. The matching
features for the new, larger fragment are computed, and it is
checked against all other fragments in the pool for matches.
The procedure is repeated until no more matches can be
found, or until only one fragment remains.

This technique is a popular choice [BBB05, ÜHT99,
PPE02, KYKI01, BK93, SE06, SE08, MP06, dS09] and ex-
ists in a number of variants. Some implementations incor-
porate backtracking to help escape local minima. However,
since the search space is so large, all implementations em-
ploy heuristics based on the quality of individual matches
and/or small clusters and therefore are not guaranteed to ar-
rive at the globally optimal solution.

Dense Cluster Growth To improve the chance of finding
a globally optimal solution, some methods consider multi-
ple matches at every iteration of a greedy algorithm. For ex-
ample, [KK01, MK03, WF10] note that merging triplets of
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fragments produces fewer missteps in the search than merg-
ing pairs. Similarly, Goldberg et al. [GMB04] observe that
considering two matches when adding each fragment to a
cluster achieves better results than methods that consider just
one match at a time, and greatly improves disambiguation of
matches when reconstructing jigsaw puzzles, in particular in
the case of fragments with large straight edges. Even so, they
are not able to build large clusters with just this technique,
due to accumulation of alignment errors in long sequences
of matches.

Global Relaxation To assist building large clusters from
pairwise matches, a few methods include a global relaxation
step to optimise fragment alignments in each step of a greedy
search [GMB04, HFG∗06, Str09, ZZH08]. For example, af-
ter each fragment is added to a cluster, [GMB04] optimise
the placement of all fragments in the cluster to minimise
the sum of squared distances between corresponding feature
points on fragment boundaries. [Str09] optimise the frag-
ment transformations to minimise the sum of squared dis-
tances between all closest points on adjacent fragment con-
tours. [ZZH08] optimise a match compatibility score based
on fragment area and boundary overlaps. These methods do
indeed improve the placement of fragments as clusters are
built; however, the optimisation is performed in each step
only after a fragment is added to a cluster, and thus does not
directly influence the selection of the next fragment(s) to be
added. As a result, the greedy algorithm can take missteps
when it selects a fragment to add without considering the
information in the resulting global alignment.

3. Overview

Drawing from the collective body of previous work, we have
designed a fully automatic system for assembling clusters of
fragments from a given set of proposed matches. We show
how two critical design decisions, inclusion of global relax-
ation into the assessment of individual matches and includ-
ing all individual fragments in relaxation at all times, im-
prove the maximum achievable cluster size.

The system takes a set of digitised fragments and a set of
candidate pairwise matches, and produces a set of globally-
consistent clusters (Section 4). The candidate matches can
be from any combination of pairwise match detection algo-
rithms — the only requirement is that all of the matches be
scored with the same ranking metric. Section 5 describes two
cluster operators, global relaxation and a match completion,
that distribute error throughout a cluster. Finally, our fitness
function (Section 6) measures the degree of global consis-
tency and is used in both example assembly strategies (Sec-
tion 7).

4. Input Match Candidates

Because different pairwise matching algorithms typically
find different subsets of the true matches, it is advantageous

to use the output of several such algorithms simultaneously.
We therefore opt for a very loose coupling of the pairwise
matching and global assembly stages: any pairwise matching
algorithm can be use to produce a set of candidate matches,
and the output of multiple algorithms can be combined sim-
ply by re-ranking all proposals according to a single scoring
metric. The global assembly relies exclusively on this rank
and on the pairwise alignment transformations for each can-
didate match. As a result, it is only responsible for recognis-
ing matches, not producing them.

In contrast, “merge and conquer” systems fuse fragments
together and generate new pairwise matches among the
larger, merged fragments. This can be advantageous be-
cause multiple, short matching edges may be merged to-
gether to form a single, long matching edge that is easier
to detect. However, global relaxation becomes more com-
plex if fragments are merged, as does combining different
pairwise matching algorithms when their use is interspersed
with clustering. When clustering purely on the basis of pre-
computed candidates is insufficient, we suggest an interme-
diate approach where entire clusters are fused, followed by
a new round of pairwise matching and global clustering.

5. Global Relaxation

We perform global relaxation using a physically-based non-
linear solver to simultaneously minimise all local alignment
errors. To further improve its effectiveness at distributing lo-
cal error, we start by applying a match completion operator
to create a maximally dense set of connections within the
cluster.

5.1. Physical Simulation

In the physical simulation, each fragment in a cluster is
represented as a rigid body with unit mass and moment
of inertia. Each match is decomposed into three springs:
one linear spring to regulate the distance between the frag-
ments, and two torsion springs for the angles of the frag-
ments with respect to each other. The simulation accumu-
lates the forces exerted on each fragment by the set of
springs, then computes net linear and angular accelerations
for each rigid body. A fourth-order Runge-Kutta ordinary
differential equation solver is used to solve for the posi-
tions and orientations of the fragments at a point in time
slightly after the input time. This procedure is iterated un-
til the change in energy of the system converges within an
epsilon of the previous iteration.

The simulation does not include collision detection be-
tween the fragments. In any such simulation, the gross ma-
jority of the effort is spent resolving collisions, so omitting
their computation is a very significant reduction in cost. The
candidate matches that are the input to the system already
encode physical interpenetration constraints, so a spring-
measured deviation is directly related to a corresponding de-
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viation from the physically optimal alignment. As such, this
form of global relaxation is a fast and efficient approxima-
tion of a physically-correct solution.

The low cost of the relaxation allows it to be used more
often than would otherwise be possible. We perform global
relaxation not only after the addition of each fragment to the
cluster, but also during the search process. When examin-
ing a candidate fragment and the set of matches potentially
linking it to the the cluster being grown, we perform global
relaxation on this configuration before any scoring is per-
formed.

In contrast to the “merge and conquer” strategies dis-
cussed in Section 2.2, our approach does not fix the relative
poses of fragments as they are merged. As a result, any error
in the match used to join the fragments is not carried forward
into further assembly calculations because global relaxation
can correct them as new fragments are added.

5.2. Match Completion

Global relaxation is most effective at distributing error when
there are many matches linking the fragments, which leads
to many loops in the connection graph. Error is distributed
along these loops, so it is desirable to have a maximally
dense set of connections in the cluster [HFG∗06]: every frag-
ment that could have a match linking it to its neighbour
should have one. This operation finds all pairs of adjacent
but unconnected fragments in the cluster, then gathers all
possible matches from the input set that could be used to
link each pair. The combinations of these candidate matches
are enumerated, and the best-scoring valid match configu-
ration is then added to the cluster, and global relaxation is
performed.

6. Fitness Function

By determining the global consistency of a cluster, the global
fitness function plays a key role in global assembly, incor-
porating the residual of the global relaxation (expressed as
energy in the simulated springs) and a measure for frag-
ment interpenetration within the clustering. More precisely,
we consider the displacements of linear match springs, the
displacements of angular match springs, and the largest in-
terpenetration distance of fragments.

We define thresholds for each component of the fitness
function. When evaluating potential additions to the cluster,
these thresholds determine whether a configuration is valid.
The threshold values are set generously, so as not to exclude
any real matches, despite the error present in the cluster. Em-
pirically determined values that fulfil this need are: a maxi-
mum interpenetration distance of 7.5 mm, a maximum linear
displacement of 12.5 mm, and a maximum angular displace-
ment of π/3 radians. Any match configurations that pass these
threshold values are considered to be valid.

Once the valid configurations for growing a cluster are re-
tained, they are tested by adding them to the cluster to be
grown, relaxing the test cluster, and then scoring the result-
ing cluster. The score of a cluster is defined as the sum of the
uniform norm of these three values. This is the sum of the
maxima of linear spring displacements, angular spring dis-
placements, and largest fragment interpenetration distances.

It is worth noting that this scoring function produces a re-
sult that is independent of the size of the cluster. This way,
there is no bias in constructing smaller or larger clusters,
and two clusters of different sizes can be compared mean-
ingfully, as it is the worst values of each that are being com-
pared.

7. Assembly Strategies

The main novelty in our approach is that we perform global
relaxation on a cluster with a new fragment before deciding
if that fragment is correctly placed, rather than after. While
requiring an increased amount of relaxation steps, this strat-
egy is greatly aided by the high efficiency of the relaxation
operations described in Section 5.

This idea is independent of the clustering approach taken,
and we demonstrate its efficacy by incorporating it into
two representative assembly algorithms, one being a vari-
ant of agglomerative, best-first hierarchical clustering, the
other being inspired by triplet-based merge strategies, incre-
mentally growing a cluster one fragment at a time. Despite
having different merge strategies, both algorithms share the
common aspect of incorporating global relaxation into the
search, evaluating each potential configuration in a global
context.

7.1. Hierarchical Clustering

Our basis implementation of hierarchical clustering follows
the common structure of agglomerative hierarchical clus-
tering. We perform greedy best-first hierarchical clustering,
where every fragment is placed into a cluster, the best candi-
date match is taken from the set, and the clusters are joined
by means of that match, and then global relaxation is per-
formed on the resulting cluster. This process is repeated until
no more matches remain.

We extend this algorithm by evaluating each potential
configuration’s global fitness (Section 6) after performing
global relaxation on what the result would be if the config-
uration were constructed. Once a valid configuration is en-
countered, we merge the clusters and then apply the match
completion operator (Section 5.2), followed by a final relax-
ation pass.

7.2. Dense Cluster Growth

Our approach is inspired by the observation by Goldberg et
al. [GMB04] that placing a puzzle piece in the context of two
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neighbouring pieces, rather than considering a single match
at a time, sufficiently constrains the problem to allow for a
greedy approach.

Initially, seed clusters are formed from the best-ranking
candidate matches: top-scored fragment pairs are merged to
build seed clusters until all fragments are part of a seed. Not
all of these matches will be correct, and will not grow to be
large clusters, but enough of the seed clusters will be based
on correct matches for the reconstruction to proceed.

Starting from each seed cluster, we run dense cluster
growth by iteratively adding the best configuration of a frag-
ment and two matches that link it to two fragments in the
cluster. These configurations are computed by examining
each fragment in the cluster for valid candidate matches to
fragments outside the cluster, and then looking for valid can-
didate matches from the external fragment to a second frag-
ment in the cluster. Each valid configuration is evaluated ac-
cording to its global fitness by adding the external fragment
to the cluster, linked by the two matches in the configura-
tion, and the resulting cluster is subjected to thresholding
and scored (Section 6). The valid configurations are stored
in a list, ranked by their global fitness scores. After all frag-
ments in the cluster have been examined, the best-scoring
configuration, if any, is added to the cluster, and the cluster
is relaxed. If there are no valid configurations for adding a
fragment to the cluster, the cluster is no longer considered
for growth.

Note that the original pairwise match rankings are only
used for seed cluster creation; during the growth phase, rank-
ing is solely based on the global fitness function, which in-
cludes both pairwise relations and global consistency.

Similarly to the case of hierarchical clustering, we option-
ally extend this algorithm by adding global relaxation to the
scoring phase: whenever a valid configuration is scored, we
first run global relaxation before determining its global fit-
ness. Once a fragment has been added, we perform match
completion and globally relax again.

8. Results

To evaluate the performance of the system, we attempt to
assemble a known dataset: the 129-piece synthetic fresco
used by Brown et al. [BTFN∗08]. This fresco was created
by conservators, then shattered, and many fragments have
been removed to increase realism of the case. The remaining
fragments were digitised, and a set of ground-truth matches
was created, based on a manual reassembly. Due to the miss-
ing fragments, the fresco is not one connected cluster; in
this evaluation, we focus on the largest cluster of 118 frag-
ments (see Figure 1).

Two sets of matches are used in reconstructing this fresco:
a set of 256 ground-truth matches, and a set of 11,474 high-
scoring matches. The set of ground-truth matches for this

Figure 1: The ground-truth synthetic fresco used by Brown
et al. [BTFN∗08]. (The fresco is disconnected; shown here
is only the largest cluster.)

fresco was obtained by manually positioning pairs of frag-
ments in their known relative orientations, and then optimis-
ing their poses by means of the iterative closest points regis-
tration algorithm [BM92]. The set of high-scoring matches
is computed with an algorithm similar to Brown et al.’s
RibbonMatcher [BTFN∗08]. It is the combined result of
three runs of the algorithm, using window sizes of 12.5 mm,
25 mm, and 50 mm sampling windows. As with all known
pairwise matching algorithms, the RibbonMatcher does not
have perfect recall, so some genuine matches between frag-
ments were not found. Where these genuine matches were
absent, matches from the ground truth set were added as a
supplement. This is to ensure that cluster growth is not in-
hibited by lack of viable matches. The combined matches
were then scored by a decision tree based on numerous
fragment features, similar to the one used by Funkhouser
et al. [FSTF∗11]. The first 152 ranked matches in this set
are true ones, but the precision falls away quickly after that.
There are 256 matches in the ground-truth set, so approxi-
mately 40% of the correct matches are not the best-scoring
ones.

Given the design of the dense cluster growth algorithm,
which requires that an added fragment be joined to the clus-
ter in two places, it is not possible to reconstruct the entire
fresco from any given starting point, as it becomes impossi-
ble to progress into areas where fragments are connected to
only one other. There are several regions that can be recon-
structed using the dense cluster growth method; here we are
reporting on the largest clusters only, as the problem of error
accumulation is less pronounced for small clusters.

We show the effectiveness of our modified match scoring
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Figure 2: Hierarchical Cluster growth, when performing re-
laxation only after each merge operation (see Figure Legend
below). The assembled cluster contains 118 fragments and
117 matches, 13 of which are incorrect.

approach for both assembly strategies by comparing results
of the baseline versions with the modified algorithms.

With classic hierarchical clustering alone, all 118 frag-
ments are placed with the minimum possible 117 (n − 1)
matches, 13 of which are incorrect (see Figure 2). When
global relaxation is incorporated into the search phase, and
the match completion operator is applied after each merge
operation, performance improves: all 118 fragments are
placed, but with 188 matches, 10 of which are incorrect (see
Figure 3).

In the case of the dense cluster growth algorithm, with-
out performing global relaxation as part of the search, most
of the largest regions cannot be grown accurately (see Fig-
ure 4). If global relaxation is performed as a part of the
search process and not only after the best fragment and its
joining matches are found, there is a much higher rate of

Figure 3: Hierarchical Cluster growth, when performing re-
laxation during the search process. The assembled cluster
contains 118 fragments and 188 matches, 10 of which are
incorrect.

success, as many more spurious matches are rejected (see
Figure 5).

Performing global relaxation after adding each fragment
is much less expensive than performing it for each candidate
fragment configuration as part of the search process, but it
does not yield equally good results. (Specifically, running
times for hierarchical clustering were approximately 40 min
without and 41⁄2 hrs with our modification, while dense clus-
ter growth requires 1 hr without and 31⁄2 hrs with relaxation
during the search phase when started from within the largest
cluster.)

Overall, our modification significantly increases the re-
construction size of our test dataset, see Figure 6.

9. Discussion and Future Work

We have shown that using a more thorough approach
to global consistency checks when evaluating potential
matches increases the size of assembly problems that can
be solved in the vicinity of local alignment errors.

The number of fragments successfully assembled auto-
matically by the system may not be large as in the mostly-
accurate reconstruction of 320-piece jigsaw puzzles by

Figure Legend

Matches indicated in light green are correct matches,
and matches in light red are incorrect. Areas where
fragments interpenetrate are shaded in red. Small num-
bers show fragment identifiers. Coarse grid lines denote
centimetres.
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Figure 4: Cluster growth, (starting with the match connect-
ing fragments 100 and 101) when performing relaxation
only after selecting the best candidate fragment. The assem-
bled cluster contains 58 fragments and 113 matches, 13 of
which are correct, and 100 incorrect.

Nielsen et al. [NDH08], but it is worth noting that our dataset
is particularly problematic. The fragments exhibit erosion,
and many pieces have at least one straight edge, which
greatly increases the complexity of the assembly search.
Note that Zhu et al. [ZZH08] report that if the number of
fragments being assembled is “not greater than about 50,”
automatic global assembly is possible. They found matches
along straight edges of fragments to be so problematic that
they excluded them, and relied on being able to find a
spanning tree of matches, rather than every possible match.
Others resort to strongly penalise matches along straight
edges [MK03]. Although it is easier to disambiguate can-
didate matches in a global context — the additional infor-
mation helps ensure that false matches that score well lo-
cally are still penalised globally — error accumulation still
quickly overwhelms the extra discriminatory power.

We presented two assembly strategies with distinct prop-
erties that make it conceivable to run both algorithms con-
currently. While hierarchical clustering is able to intercon-
nect clusters with single matches only (and hence may gen-
erally create larger clusters), our dense cluster growth algo-
rithm applies stronger constraints to potential additions, ulti-
mately leading to fewer false connections. Ultimately, how-
ever, any false matches added before termination are likely
to be identified at the time of physical assembly.

Figure 5: Cluster growth, (starting with the match connect-
ing fragments 100 and 101) when performing relaxation dur-
ing the search process. The assembled cluster contains 52
fragments and 102 matches, 94 of which are correct, and 8
incorrect.

(a) Hierarchical clustering (b) Dense cluster growth

Figure 6: Level of completion achieved with our modifica-
tion. (a) Largest cluster found by hierarchical clustering. (b)
Largest cluster assembled by dense cluster growth; note that
the front where the assembly stopped runs through many
four-way-junctions of cracks, where fragments cannot be
added through two matches at the time.

As an algorithm based on pairwise matches, our approach
differs from other approaches in that we postpone decisions
on the suitability of a potential configuration until a match
has been evaluated in its global context (including relax-
ation). As such, our system bears resemblance to previous
approaches that do not rely on external match predictors, but
find matches starting from the current state of the assem-
bly. However, the constraints implied by the input pairwise
matches rein in the search, so not all combinations need be
evaluated.

A possible extension of the system is to perform a fully
physically-correct global relaxation on the cluster after the
addition of a fragment to the cluster, but to retain the fast
approximation during the search.
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10. Conclusion

We have presented a system for the fully-automatic assem-
bly of fragmented 2-D objects, which operates on a set of
fragments and a set of proposed pairwise matches, using two
alternative assembly strategies. As a core contribution, we
extended each of these algorithms by integrating global re-
laxation into the search phase of the assembly process.

We argue that, by putting more emphasis on global re-
laxation than previous approaches, we are making more ef-
fective use of global consistency information when disam-
biguating pairwise matches to guide the agglomerative as-
sembly process. Furthermore, maintaining the fragments in
the cluster as separate entities and not merging them once
the cluster is grown allows them to be adjusted by subse-
quent global relaxation, as information introduced later in
the assembly process might yield a more globally-consistent
cluster.

Using a representative test dataset with considerable am-
biguity in its pairwise matches, we have shown that this
modification effectively increases the cluster size achievable
in the presence of error accumulation. Since the system op-
erates with a set of fragments and a set of proposed matches,
these techniques are immediately applicable to all 2-D as-
sembly problems, given digitised models of the fragments,
and the output of a pairwise match proposal algorithm.
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