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Abstract

One of the main problems faced during reconstruction of fractured archaeological artifacts is sorting through a
large number of candidate matches between fragments to find the relatively few that are correct. Previous computer
methods for this task provided scoring functions based on a variety of properties of potential matches, including
color and geometric compatibility across fracture surfaces. However, they usually consider only one or at most a
few properties at once, and therefore provide match predictions with very low precision. In this paper, we investi-
gate a machine learning approach that computes the probability that a match is correct based on the combination
of many features. We explore this machine learning approach for ranking matches in three different sets of fresco
fragments, finding that classifiers based on many match properties can be significantly more effective at ranking
proposed matches than scores based on any single property alone. Our results suggest that it is possible to train
a classifier on match properties in one data set and then use it to rank predicted matches in another data set
effectively. We believe that this approach could be helpful in a variety of cultural heritage reconstruction systems.

1. Introduction

Reconstruction of fractured ancient artifacts, such as fres-
coes, is important because it helps archaeologists make in-
ferences about past civilizations. Unfortunately, at archae-
ological sites with large numbers of fragments, reconstruc-
tion is difficult, since a large space of potential “matches”
between fragments must be searched and evaluated.

To assist in this process, computer systems have been built
that scan fragments with cameras and/or laser scanners and
then use computer algorithms to assist reconstruction. For
example, the Stitch Project [CWAB01] has provided semi-
automatic algorithms for reconstruction of pottery, murals,
and sculptures, and The Forma Urbis Romae Project has
provided methods to search for matches in an ancient mar-
ble map of Rome [KL06]. These projects have provided au-
tomatic methods to search for potential matches between
fragments sharing a fracture boundary, but usually predict
matches with low precision (many false matches are pro-
posed for every correct one found). Therefore, a great burden
is placed on a user to sift through a large set of predictions
to identify the correct ones.

The main objective of this paper is to provide a method to
rank predicted matches between pairs of fragments with high
precision and to provide a measure of confidence for each

one. That is, given two scanned fragments and a proposed
aligning transformation (a candidate “match”), we aim to
provide a function that estimates the probability that the
match is correct. This objective is challenging because exca-
vated artifacts often have erosion, color fading, and other de-
terioration that make discrimination of correct matches dif-
ficult.

Our approach is to utilize a set of examples to train a
classifier to predict the probability of a match based on a
multitude of properties computable from scans of fragment
surface colors and geometry. This approach follows the ob-
servations of two recent papers, one by Shin et al. that ana-
lyzed many properties of matches in assembled frescoes and
suggested that they might be effective for classifying pro-
posed matches [SDF∗10], and one by Toler-Franklin et al.
that tested the value of match properties based on surface
color, normal maps, and edge geometry using a framework
based on machine learning [TFBW∗10]. Our contribution is
to combine these two ideas into a system that predicts the
probability of predicted matches with high precision.

We explore this machine learning approach for finding
matches in three different data sets, one from a Late-bronze-
age settlement in Greece (Akrotiri), a second from a Ro-
man City in Belgium (Tongeren), and a third constructed
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specifically for this project (Synthetic). Our findings indicate
that classifiers based on many match properties are signifi-
cantly more effective at ranking proposed matches than are
scores based on any single property alone. They also sug-
gest that it is possible to train a classifier on match proper-
ties in one data set and then use it to rank predicted matches
in another data set effectively. For example, the classifier
learned from examples in the Akrotiri data set can be used
to rank matches in the Tongeren data set with 96% precision
at 50% recall, whereas the previous state-of-the-art method
provides only 2% precision at the same recall for the same
test case [BTFN∗08].

Overall, our main research contribution is investigating
the idea of using machine learning to combine a large va-
riety of match properties into a probability estimation. Sec-
ondary contributions include the descriptions of the match
properties considered, many of which are novel, and the re-
sults of experiments suggesting that cross-training is an ef-
fective strategy for ranking proposed matches. We believe
that that there are many applications of this approach in re-
construction of cultural heritage artifacts.

2. Related work

There has been a long history of work on computer-aided
reconstruction of fractured objects in archeology [WC08].
Most previous work has focused on finding pairwise matches
between adjacent fragments by aligning patterns in their sur-
face colors [FT05], polygonal boundaries [PPE02], and/or
fractured edges [HFG∗06]. These methods have been suc-
cessful in cases where the fragments have highly distinctive
features [HFG∗06], the reconstructed objects are surfaces
of revolution [CM02], and/or when domain-specific features
can be used to identify potential matches [KL06]. However,
they have not been able to find matches with high precision
amongst a large set of flat, mostly-monochromatic, partially-
eroded fragments, such as those commonly found in fres-
coes.

Several researchers have observed that it is desirable to
combine more than one computed property into a scoring
function used to rank potential matches. However, most pre-
vious methods have utilized simple combination strategies
based on hand-tuned weights and/or thresholds. For exam-
ple, Brown et al. scored potential matches with a “ribbon-
matcher error” that is the sum of two terms, one that mea-
sures the root mean squared distance (RMSD) between cor-
responding points in a fixed size “window” (50mm) of the
scanned fracture surfaces, and another that is proportional to
the difference between fragment thicknesses, after thresh-
olds on these two terms and the amount of surface inter-
penetration are applied to rule out bad matches [BTFN∗08].
McBride et al. scored potential matches based on a func-
tion with three terms: λ1 ∗Cdistance + λ2 ∗

√
Clength + λ3 ∗√

Cdiagnostic, where Cdistance measures the average length
between corresponding points on contours of the two frag-

ments, Clength measures the arc length of the contact region
on the contours, Cdiagnostic measures how complex or jagged
the contact region is, and λi are weights used to blend these
three terms (square roots were added by the authors to the
second and third terms after empirical results showed that
they can “obscure the distance measure”) [MK03]. While
these methods can be hand-tuned for a small number of
match properties on specific data sets, it would be imprac-
tical to use them to combine hundreds of properties. More-
over, it would be tedious to re-tune parameters by hand for
different data sets, a task that probably could only be done
by experts.

Recently, Toler-Franklin et al. explored the idea of us-
ing machine learning to incorporate multiple match prop-
erties into a scoring function [TFBW∗10]. They computed
a variety of properties of “patches” (small regions on frag-
ment boundaries) and then trained a classifier to score patch
pairs based on the differences between the computed proper-
ties. The focus of their study was on evaluating the discrim-
inability of their new patch properties based on normal maps
– they performed classification experiments on small sets
of matches and non-matches and concluded that combining
multiple properties with a classifier helps improve precision
at high recall values. We aim to extend the ideas in that paper
to consider many new, more discriminating match properties
(and thus achieve higher precision at all recall levels) and to
integrate machine learning into a full prediction system that
finds novel matches in excavated frescoes.

3. Approach

In this paper, we investigate the idea of using a classifier
trained on examples from the same or a different fresco to
predict the probability that a proposed match between two
fresco fragments is correct.

The main motivation for this approach is to provide au-
tomatic methods for combining large numbers of properties
into a match scoring function. There are many properties of
matches that can be computed easily, which may be useful
for recognizing correct ones. However, it is difficult to know
in advance which properties will be most discriminating for
a given data set. So, instead of deciding in advance which
properties we expect to be useful, we take the approach of
computing as many properties as possible and then allowing
a machine learning algorithm to determine which ones to use
and how to combine them based on examples provided in a
training set. With this strategy, there is little burden on the
user to select/weight the most important properties, and the
system can adapt to different data sets automatically based
on properties of the examples.

In contrast to previous methods for ranking proposed
matches, this approach utilizes information in previously
discovered matches, combines multiple properties via op-
timization, requires no hand-tuning of parameters, and es-
timates the probability that a match is correct (rather than
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providing only a score for ranking). Thus, we believe that it
can be used by untrained operators to discover matches in
new, large data sets.

There are several interesting questions to consider dur-
ing an investigation of this approach – for example: 1) how
are fragments scanned?, 2) how are candidate matches pro-
posed?, 3) which match properties are measured?, 4) how is
the training set composed?, and 5) how well do the proper-
ties of matches in one data set predict matches in another?
These questions are addressed in the following five sections.

4. Data Sets

Our investigation is based on data collected with the
scanning systems described in Brown et al. [BTFN∗08]
and [BLD∗10]. They developed systems that quickly acquire
color images for the front and back surfaces and laser scans
of the fracture surface for a large number of fragments (Fig-
ure 1). They also provide processing tools to: 1) detect the
front surface plane (grey textured surfaces), 2) to extract a
regularly sampled “ribbon” representation of the 3D fracture
surface (red and blue surfaces), and 3) to extract a 2D con-
tour representing the shape of the fragment by intersecting
the ribbon with a slicing plane 4mm from the front surface
plane (orange curve).

Figure 1: Front surfaces and ribbons acquired for two
matching fragments in the Akrotiri data set.

We consider three data sets collected with these tools:

• Akrotiri: an excavation of a Late Bronze Age Aegean city
in Greece destroyed by a volcanic eruption in approxi-
mately 1650 B.C. [Dou92]. We have scanned 1408 fresco
fragments, amongst which there are 111 known matches.

• Tongeren Vrijthof: an excavation of a Roman building
in Belgium destroyed by fire over the first three centuries
A.D. [Lak10]. We have scanned 1306 fresco fragments,
amongst which there are 203 known matches [BLD∗10].

• Synthetic: a plaster fresco recently created and frac-
tured specifically for research on fresco reconstruc-
tion [BTFN∗08]. We have scanned 130 fragments,
amongst which all 256 correct matches are known.

These data sets provide interesting test cases for our study
because they come from disparate sources varying widely
in space, time, culture, and scanning technologies. The Syn-
thetic Fresco was made “in the style of” the Akotiri wall
paintings, but more recently by more than 3,500 years. The

Tongeren Vrijthof frescoes come from a Roman building in
Belgium that was built and destroyed approximately 2,000
years ago, and show different materials and construction
methods than the others. The Akrotiri wall paintings were
destroyed by earthquakes preceding a volcanic eruption,
Tongeren’s were destroyed in phases over time by fire caused
by warfare, and the Synthetic Fresco was broken intention-
ally. Fragments from Akrotiri have been stabilized by con-
servators, while fragments from the others hardly have. Fi-
nally, 3D geometry for the Akrotiri and Synthetic data sets
were acquired with a laser scanner, while the Tongeren data
set was scanned with structured light. Due to these differ-
ences, it is not obvious that properties of fragment matches
found in one data set will provide good predictors for prop-
erties of matches in the others, and so we believe these data
sets provide challenging cases for cross-training.

5. Generating Candidate Matches

Once fragments have been scanned, the first step in any
reconstruction system is to search for a set of pairwise
matches between fragments, which will be scored to pro-
duce a ranked list of candidate matches. Several methods
are possible for this step, including ones that align extracted
facets of fragment surfaces [PK03,HFG∗06], ones that align
points of high curvature [MP06, PSCC07], ones that align
detected corner points [MK03], and ones that search exhaus-
tively [BTFN∗08, KK01].

In our study, we leverage the method of Brown et al.,
which utilizes the regularly sampled “ribbon” representa-
tion and an incremental alignment algorithm to quickly com-
pute the RMSD for all possible pairs of boundary patches
sampled at 0.25mm increments [BTFN∗08]. The candidate
matches produced by this algorithm are culled based on
thresholds limiting the maximum RMSD, the maximum dif-
ference between fragment thicknesses, and the maximum
volume intersection of aligned fragments. The pairwise
matches passing these thresholds are then scored with the
“ribbonmatcher error” described in [BTFN∗08] and added
to the candidate match set.

This match generation method represents the state-of-the-
art for the data sets considered in this study. It exhaustively
searches for alignments, culls out the obvious non-matches,
and provides an initial estimate of the match quality. How-
ever, the precision of the ribbonmatcher error is not high
enough to recover all correct matches within a candidate set
that can be evaluated by a person in a practical amount of
time. Our goal is to re-rank these candiate matches so that
the correct matches can be found quickly.

6. Computing Match Properties

Our next step is to compute properties of matches that
are likely to be useful for discriminating correct candidate
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Figure 2: Measurements utilized by match properties.

matches. Of course, several properties have been investi-
gated previously in the literature, including similarities of
front surface textures, boundary contours, and fracture sur-
face patterns, as described in Section 2.

In addition to these traditional properties, we consider
novel ones motivated by the recent study of Shin et
al. [SDF∗10]. They analyzed the properties of matches be-
tween fragments in an already-reconstructed fresco and con-
cluded that the fracture pattern resulted from a hierarchical
breaking process. They observed that contact regions (edges)
between adjacent fragments tend to be nearly straight and
cover approximately 1/5th of the fragment perimeter, that
fragments tend to match with other fragments of nearly equal
size, and that “junctions” where multiple fragments join usu-
ally have three edges coming together in a T-junction (also
noted in [KK01, MK03]). These observations imply very
specific features of matches that we hope to capture in com-
putable properties.

In all, we choose a set of 64 properties to compute for
each match M. The following provides a brief list, grouped
by the type of data from which they are derived. Details of
how these properties are defined and computed appear in the
Appendix.

• Fragment Properties measure the compatibility of the
two fragments based on the differences in their thick-
nesses and front surface colors and the ratios of their front
surface areas.

• Contour and Ribbon Contact Properities measure how
well 2D contours (or 3D ribbons) representing the frag-

ments align with one another based on “contact corre-
spondences,” points from the surfaces of two different
fragments that are aligned by M. The compatibility of
the surfaces in contact is measured with the RMSD be-
tween corresponding contact points, the differences be-
tween curvatures at corresponding contact points, the size
of the region containing contact points, the ratios of that
size with respect to the fragment sizes, the density of
points in that region that are indeed in contact, and how
closely the contact points fit a straight line/plane.

• Contour and Ribbon Window Properties measure the
RMSD of corresponding points on the 2D contours (or
3D ribbons) representing the fragments within fixed width
“windows” centered in the middle of the contact region
(e.g., green square in Figure 2a).

• Contour Overlap Properties measure how much the
contours inter-penetrate one another based on the aver-
age depth, maximum depth, and total area of the contour
overlaps (see inset in Figure 2d).

• Contour Convexity Properties measure how convex the
union of two fragements is in comparison to the convexity
of the individual fragments.

• Junction Angle Properties measure interior and exterior
angles at boundaries of contact regions (Figure 2e).

• Ribbonmatcher Properties are provided directly by the
ribbonmatcher. They comprise the RMSD of correspond-
ing points within a 50mm window on the ribbon, the es-
timated volumetric intersection of the two fragments, and
a composite error used to rank matches in [BTFN∗08], as
described in Section 2.
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7. Learning a Match Classifier

Our final steps are to learn a match classifier based on exam-
ples in a training set and then to use that classifier to estimate
the probability of new candidate matches being correct. This
is a classical machine learning problem. However, there are
several interesting issues to consider when building a practi-
cal system for finding matches with this approach: 1) choos-
ing a training set, 2) choosing a classification model, and 3)
training the classifier.

In this study, we consider scenarios where the classifier is
trained on matches known in one fresco (the training set) and
then used to find matches in a different fresco (the test set).
For both the training and test sets, we run the ribbonmatcher
to generate candidate matches and compute the properties
listed in the previous section for all of them, culling matches
that have a property value outside a predetermined allowable
range (where ranges are chosen very conservatively so as to
not discard any correct matches). We train a classifier that
associates the 64 properties defined for each match (a feature
vector) with a label indicating whether the match is correct
or not. Then, for each candidate match in the test set, we
apply the classifier to estimate a probability that it is correct.

Our method for building the classifier from the training
set is based on M5P regression trees as implemented in Weka
[WF05]). This model builds a decision tree that splits feature
space into distinct regions and then fits a linear regression
model for each region independently. It was chosen for our
study because it automatically performs feature selection for
both the decision tree and the linear regression models, it fits
non-linear relationships between input and output variables
(piecewise linear), and it provides an explanation for how the
model operates (the decision tree). Of course, nothing in our
study is dependent on this particular choice, and we believe
that several other alternatives could have been used just as
effectively.

A practical concern in building the classifier is to provide
an appropriate number of training examples. In our case,
the training sets typically have very few examples of cor-
rect matches amongst vast numbers of incorrect candidates.
Thus, providing all the examples as training data would
guide the classifier towards predicting “not correct” (since it
optimizes overall classification rate). Alternatively, random
subsampling could miss the most useful data (since correct
matches are rare). To alleviate these concerns, we utilize at
most 50,000 candidate matches when training the classifier,
selecting all of the correct matches and filling out the re-
mainder with randomly selected incorrect matches.

Figure 3 shows a decision tree learned by our system
when trained on examples from the Synthetic Fresco. Exam-
ining the tree, it is interesting to note that nodes of the tree
take into account different types of properties, which sug-
gests that several properties can be combined to make better
predictions than any property alone.

RibbonContactRMSD <= 0.429 :
RibbonContactRMSD <= 0.375 :

RibbonContactPlanarity <= 0.517 :
ContourContactRMSD <= 0.286 :

ContourContact4mmHorizCurvL2 <= 0.009 : LM1 (29)
ContourContact4mmHorizCurvL2 > 0.009 : LM2 (112)

ContourContactRMSD > 0.286 : LM3 (560)
RibbonContactPlanarity > 0.517 :

RibbonContactArea <= 446.36 :
RibbonContactRMSD <= 0.36 :

RibbonJunctionMinInteriorAngle <= 2.232 :
ContourContactRMSD <= 0.217 : LM4 (17)
ContourContactRMSD > 0.217 :

ContourContactMinLenAreaFract <= 0.309 : LM5 (20)
ContourContactMinLenAreaFract > 0.309 :

RibbonContactRMSD <= 0.331 : LM6 (12)
RibbonContactRMSD > 0.331 : LM7 (20)

RibbonJunctionMinInteriorAngle > 2.232 : LM8 (29)
RibbonContactRMSD > 0.36 : LM9 (91)

RibbonContactArea > 446.36 : LM10 (53)
RibbonContactRMSD > 0.375 :

RibbonContactArea <= 235.969 : LM11 (3015)
RibbonContactArea > 235.969 :

RibbonContact1mmMeanCurvL2 <= 0.121 : LM12 (603)
RibbonContact1mmMeanCurvL2 > 0.121 : LM13 (151)

RibbonContactRMSD > 0.429 : LM14 (7416)

Figure 3: Decision tree learned by training on matches in
the Synthetic Fresco. Each line represents a branch con-
ditioned on a property value. Lines with LMx (y) are leaf
nodes, where LMx represents a linear regression model, and
y indicates the number of matches classified with that regres-
sion model in the training set.

8. Experimental Results

We have executed a number of experiments with the pro-
posed match classification approach in an effort to char-
acterize how effective it is at ranking matches. In these
experiments, we consider only the scenario in which the
match classifier is trained on examples from one fresco
(Akrotiri, Tongeren, or Synthetic) and then tested on candi-
date matches from another. We chose this scenario because
it is the most challenging case for our approach – frankly,
it is not obvious that our approach should work at all in this
scenario, since matches in the training set may have different
properties than the ones in the test set due to differences in
colors, materials, erosion, scanning, etc.

For the sake of clarity, we limit these experiments to con-
sider only matches proposed by the ribbonmatcher of Brown
et al. [BTFN∗08]. Those matches provide a good set of can-
didates associated with a state-of-the-art scoring function,
the “ribbonmatcher error” (as described in Section 2). We
evaluate the quality of our scoring function in comparison
to this one using precision-recall analysis – i.e., we rank
matches according to the scoring function and then plot the
precision (true positives / (true positives + false positives)
versus the recall (true positives / (true positives + false neg-
atives) as candidates are considered in rank order.

The results are shown in Figure 4. Each plot represents
a different test set, and each curve within a plot repre-
sents a different scoring function (in our case, a differ-
ent training set). For example, the plot on the left com-
pares the precision vs. recall for candidate matches in the
Synthetic Fresco ranked by ribbonmatcher error (purple)
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a) Synthetic b) Tongeren c) Akrotiri

Figure 4: Comparison of scoring functions. The three plots show precision-recall comparisons for matches predicted in different
frescoes. The curves in each plot compare results of ranking the predicted matches with four different scoring functions: the
ribbonmatcher error (purple) and three classifiers trained on examples from different frescoes.

vs. our classifier learned with three different training sets
(red=Tongeren, green=Akrotiri, and blue=Synthetic). Like-
wise, the blue curve in each plot represents the results of
ranking matches based on the decision tree learned from the
Synthetic Fresco shown in Figure 3.

From these results, we observe that our classifiers signifi-
cantly outperform the ribbonmatcher error. It is not surpris-
ing that they perform at least as well as the ribbonmatcher,
since the ribbonmatcher error is one of the properties avail-
able to the classifiers. However, it is interesting that the clas-
sifier achieve significantly higher precision at almost every
recall. This result indicates that multiple properties are pro-
viding valuable information for ranking matches.

It is also not surprising that the classifiers perform well
when the training and test sets come from the same fresco
(the blue curve in (a), the red curve in (b), and the green
curve in (c)) – these results merely confirm that the classi-
fier is able to characterize its training set. However, it is sur-
prising that the precision achieved when training and test-
ing on different frescoes is not dramatically different than
when training and testing on the same fresco. For example,
the blue curve in Figure 4a (Synthetic predictions trained on
Synthetic examples) is not significantly higher than the red
curve in the same plot (Synthetic predictions trained on Ton-
geren examples). This result is quite remarkable, since the
frescoes were made by different people, in different styles,
in different countries, in different millennia. It suggests that
different frescoes have statistical properties similar enough
to one another that cross-training is a valuable strategy for
match discovery.

Table 1 shows compute times required for the processing
by our algorithms (in seconds on 2.2 GHz AMD Opteron
processors). Each row represents a different data set. The
second column lists the number of fragments in the data set.
The next three columns list the number of original matches
proposed by the ribbonmatcher, the number of candidate
matches satisfying our conservative thresholds, and the num-
ber of those that are correct, respectively. The rightmost

three columns list processing times. As you can see, the vast
amount of time in this experiment is spent processing candi-
date matches (computing properties) – it is approximately
proportional to the number of candidates (∼1 second per
candidate match). Once properties are computed, training a
classifier is fast (a few seconds), and applying a classifier
to compute the score for a single candidate match is very
fast (∼1 millisecond). While the times to compute properties
may seem large, they can be parallelized trivially – indeed
they were computed on a cluster with 64 processors for this
experiment, and thus took only around three hours of wall-
clock time for the largest of these data sets (Akrotiri). More-
over, the time spent re-ranking matches for each test set was
spent by the computer, not by a person – i.e., no time was
spent by an operator tuning weights or tweaking parameters
individually for each data set, which is often the most time-
consuming part of using computer-assisted fragment match-
ing. Rather, the “parameter tuning” was done automatically
by the machine learning algorithms. In cases where human
time is more valuable than computer time, this is a real ad-
vantage of the proposed approach.

# # Matches Compute Time (s)
Data Set Frag Original Candidate Correct Process Train Test
Synthetic 130 19K 12K 97 26K 6 1
Tongeren 1306 310K 188K 203 214K 27 394
Akrotiri 1408 2523K 1050K 27 772K 17 404

Table 1: Complexity and compute time statistics.

9. Conclusion and Future Work

In this paper, we have investigated the idea of using tech-
niques from machine learning to construct a classifier that
combines many properties of fragment matches to improve
accuracy of predictions in a fresco reconstruction system.
We have considered a large set of match properties, sev-
eral of which are novel, and we have compared results for
three different frescoes. Our experimental results indicate
that multiple properties can be combined with a classifier
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to produce better rankings than the previous state-of-the-art
method used for the same data sets. They also indicate that
matches found in one fresco can be used as training exam-
ples for finding matches in other frescoes, which opens up
interesting possibilities for collaboration across different ar-
chaeological sites.

Our work investigates just one way of using machine
learning for reconstruction of fragmented objects. In the
short term, the next step would be to iterate between building
a classifier based on known matches and applying the classi-
fier to discover new matches. A system of this type could
be linked to a visualization tool that helps archaeologists
verify predicted matches for each iteration, both virtually
and physically. In the longer term, it would be interesting
to characterize fragment matches based on distributions of
their properties. From comparison of distributions, it might
be possible to learn relationships between how different fres-
coes were constructed and/or how they broke, and it might
be possible to use transfer learning techniques to adapt clas-
sifiers learned from examples in one fresco as they are ap-
plied to a new one. Finally, it would be interesting to inves-
tigate whether the techniques proposed in this paper could
be applied to other fracture reconstruction problems, such
as failure analysis in forensics, assembly of broken bones in
paleontology, or repair of shredded documents.
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Appendix: Match Property Computation Details

This appendix provides detailed descriptions of how match
properties are computed for a match, M, defined by two frag-
ments, F0 and F1, and a rigid transformation, T .

For each fragment (Fi), our input data includes a color im-
age (Ii) of its front surface, a “ribbon” (Ri) representing the
3D surface of fracture edge, and a “contour” (Ci) represent-
ing a 2D horizontal slice of the ribbon (Figure 1). As de-
scribed in [BTFN∗08], the ribbon is regularly sampled, with
m ·n vertices arranged in m rows and n columns to facilitate
rapid property computation and correspondence finding. The
contour is sampled similarly, with m evenly spaced vertices
corresponding to rows of the ribbons.

Our first processing step is to find “contour contact corre-
spondences,” CCi, for each contour Ci of M. For every ver-
tex of Ci, we find the closest vertex in T (C1−i) and add a
contact correspondence to CCi iff they are within 1mm of
each other and have normals oriented in opposite directions
±60◦ (black lines in Figure 2d). We optimize these corre-
spondences along with the transformation T with ten itera-
tions of the ICP algorithm [BM92].

Second, we find “ribbon contact correspondences,” RCi
for each ribbon Ri with a similar method. For every vertex in
row r and column c of ribbon Ri, we find the closest vertex
in column c of T (R1−i) and add a contact correspondence iff
they meet the same distance and normal compatibility crite-
ria. We optimize these correspondences along with T with
one iteration of ICP algorithm [BM92].

Third, we compute a “contact region,” RRi (and CRi), for
each ribbon Ri (and contour Ci) by searching for the longest
sequence of consecutive rows in the contact correspondences
allowing gaps less than |Ci|/16 (green regions in Figures 2b
and 2e).

Fourth, we compute a “window” of correspondences
RWi(s) (and CWi(s)), for each ribbon Ri (and con-
tour Ci) by establishing correspondences between vertices
Ri[Center(CRi)+r,c] and R1−i[Center(CR1−i)-r,c] for all r ∈
[0 - s] and all c within a 5mm swath centered on the middle
column of the ribbon.

Fifth, we compute interior and exterior angles at the end-
points of the contact regions, CJ for contours and RJ for
ribbons (we call them “junctions”). Specifically, we form
line segments originating at the junctions (block dots in Fig-
ure 2e) and extending to points 5mm clockwise and counter-
clockwise on each contour (black line segments in Figure 2e)
and then compute the interior and exterior angles between
them (light purple and dark purple arcs in Figure 2e).

Finally, we compute match properties using the equations
shown in Table 2.

ContourContactLength 0.5 · (|CR0|+ |CR1|)
ContourContactDensity 0.5 · (|CC0|/|CR0|+ |CC1|/|CR1|)
ContourContactRMSD

√
∑i, j(Ci,i[ j]−Ci,1−i[ j])2 , where

(Ci,i[ j],Ci,1−i[ j]) ∈ CCi, i ∈ {0,1}, j ∈ {0, .., |CCi|}
ContourContactLinearity

√
∑i, j(Ci,i[ j]− Li)2 , where

Ci,i[ j] ∈ CCi, i ∈ {0,1}, j ∈ {0, .., |CCi|}, and
Li is the minimizing line

ContourContactCurvL2
√

∑i, j(Curv(Ci,i[ j], t, s)−Curv(Ci,1−i[ j], t, s))2 , where

(4 properties) (C,ii[ j],Ci,1−i[ j]) ∈ CCi, i ∈ {0,1}, j ∈ {0, .., |CCi|},
t ∈ { Horizontal }, and
s ∈ { 1mm, 2mm, 4mm, 8mm }

ContourContactLengthFraction Stat(|CRi|)/Measurement(Ci)), where
(4 properties) Stat ∈ { Min, Max }, and

Measurement ∈ { Perimeter,
√

Area }

ContourWindowRMSD
√

∑i, j(Ci,i[ j]−Ci,1−i[ j])2 , where

(3 properties) (Ci,i[ j],Ci,1−i[ j]) ∈ CW (s), j ∈ {0, .., |CW (s)|},
and s ∈ { 4mm, 8mm, 16mm }

ContourMergeConvexity Convexity(C0 ∪C1)
ContourMergeConvexityFraction Stat(Convexity(C0) / Convexity(C0 ∪C1),

Convexity(C1) / Convexity(C0 ∪C1) ), where
(2 properties) Stat ∈ { Min, Max }

ContourOverlapArea |C0 ∩C1|
ContourOverlapDepth Stat(Depth(Ci,i[ j])), where

(2 properties) Ci,i[ j] ∈ CCi, i ∈ {0,1}, j ∈ {0, .., |CCi|}, and
Stat ∈ { Avg, Max }

ContourJunctionAngle Stat(Angle(CJi , t)), where
(4 properties) Stat ∈ { Min, Max }, and

t ∈ { Exterior, Interior }
RibbonContactArea 0.5 · (|RR0|+ |RR1|)

RibbonContactDensity 0.5 · (|RC0|/|RR0|+ |RC1|/|RR1|)
RibbonContactLength 0.5 · ((|RR0→C0|+ |RR1→C1|), where

RRi→Ci is the projection of RRi onto Ci

RibbonContactRMSD
√

∑i, j(Ri,i[ j]−Ri,1−i[ j])2 , where

(Ri,i[ j],Ri,1−i[ j]) ∈ RCi, i ∈ {0,1}, j ∈ {0, .., |RCi|}
RibbonContactPlanarity

√
∑i, j(Ri,i[ j]−Pi)2 , where

Ri,i[ j] ∈ RCi, i ∈ {0,1}, j ∈ {0, .., |RCi|}, and
Pi is the minimizing vertical plane

RibbonContactHCurvL2
√

∑i, j(Curv(Ri,i[ j], t, s)−Curv(Ri,1−i[ j], t, s))2 , where

(4 properties) (Ri,i[ j],Ri,1−i[ j]) ∈ RCi, i ∈ {0,1}, j ∈ {0, .., |RCi|},
t ∈ { Horizontal }, and
s ∈ { 1mm, 2mm, 4mm, 8mm }

RibbonContactCurvL2
√

∑i, j(Curv(Ri,i[ j], t, s)−Curv(Ri,1−i[ j], t, s))2 , where

(4 properties) (Ri,i[ j],Ri,1−i[ j]) ∈ RCi, i ∈ {0,1}, j ∈ {0, .., |RCi|},
t ∈ { Vertical, Mean }, and
s ∈ { 1mm, 2mm }

RibbonWindowRMSD
√

∑i, j(Ri,i[ j]−Ri,1−i[ j])2 , where

(3 properties) (Ri,i[ j],Ri,1−i[ j]) ∈ RW (s), j ∈ {0, .., |RW (s)|},
and s ∈ { 4mm, 8mm, 16mm }

RibbonJunctionAngle Stat(Angle(RJi , t)), where
(4 properties) Stat ∈ { Min, Max }, and

t ∈ { Exterior, Interior }
FragmentThicknessL2 (Thickness(F0) - Thickness(F1))2 , where

Thickness(Fi) is the average number of columns
with scanned vertex positions in each row of Ri

FragmentFrontColorL2 (Stat(I0 , c) - Stat(I1 , c))2 , where
(12 properties) Stat ∈ { Mean, Median, Variance }, and

c ∈ { Red, Green, Blue, Luminance }
FragmentAreaFraction min( |C0|/|C1|, |C1|/|C0| )

Table 2: Match property equations. Note that |X | represents
the size of a point set X (e.g., the length of a contour, or the
area of a polygon).
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