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Figure 1: We propose a neural scattering compensation for 3D color printing. Comparing to a method which uses noise-free Monte Carlo

simulation our technique achieves 300× speedup in the above case while providing the same quality.

Abstract

With the wider availability of full-color 3D printers, color-accurate 3D-print preparation has received increased attention. A key

challenge lies in the inherent translucency of commonly used print materials that blurs out details of the color texture. Previous

work tries to compensate for these scattering effects through strategic assignment of colored primary materials to printer voxels.

To date, the highest-quality approach uses iterative optimization that relies on computationally expensive Monte Carlo light

transport simulation to predict the surface appearance from subsurface scattering within a given print material distribution;

that optimization, however, takes in the order of days on a single machine. In our work, we dramatically speed up the process by

replacing the light transport simulation with a data-driven approach. Leveraging a deep neural network to predict the scattering

within a highly heterogeneous medium, our method performs around two orders of magnitude faster than Monte Carlo rendering

while yielding optimization results of similar quality level. The network is based on an established method from atmospheric

cloud rendering, adapted to our domain and extended by a physically motivated weight sharing scheme that substantially reduces

the network size. We analyze its performance in an end-to-end print preparation pipeline and compare quality and runtime to

alternative approaches, and demonstrate its generalization to unseen geometry and material values. This for the first time enables

full heterogenous material optimization for 3D-print preparation within time frames in the order of the actual printing time.

CCS Concepts • Computing methodologies → Reflectance modeling; Volumetric models; • Applied computing →

Computer-aided manufacturing;

Keywords: computational fabrication, appearance reproduction,

Monte Carlo rendering, sub-surface light transport simulation, het-

erogeneous media, deep learning, machine learning

1. Introduction

Existing multi-material 3D printers are capable of depositing a

broad spectrum of printing materials at very high spatial resolution.

Apart from intricate geometries, such technologies can also be used

to reproduce complex color variation on the object’s surface. The

recent advances in color and, more broadly, appearance reproduc-

tion [SRB∗19, UTB∗19] enabled quality, making these techniques

suitable for a large number of applications ranging from a reproduc-

tion of cultural heritage [SBK∗18] to medical prostheses [SVS∗20].

The dominant technology used for both high-resolution printing

and accurate appearance reproduction is the inkjet 3D printing using

UV-curable materials [SARW∗15,Str20]. In the context of color re-
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production, the critical problem lies in undesired optical scattering

properties which significantly impact the resulting texture sharp-

ness and color accuracy. Addressing this problem, the most recent

methods [ESZ∗17,SRB∗19] apply an iterative scattering-aware re-

finement that optimizes the arrangement of printing materials to

counteract the undesired scattering and create an opaque look. The

refinement procedure heavily relies on expensive Monte Carlo (MC)

path tracing, which at every iteration predicts the appearance of the

current volumetric materials arrangement. While using an accurate

prediction leads to high-quality color reproduction, such a solution

scales poorly with the number of voxels as the paths grow in length.

The insufficient performance of these methods hampers their practi-

cal applicability, especially in the face of 3D printing’s increasing

build volume, material count, and resolution.

From a user’s perspective, preparing a 3D printout is an iterative

trial-and-error process due to inherent hardware limitations. A long

tradition in 2D printing is providing the user with a virtual preview

of the final print. If implemented accurately, this so-called soft

proofing allows for gauging any problems on the preparation side

and predicting the effect of limitations on the hardware side. In 3D

printing so far, this has only been accurately possible with a full

Monte Carlo simulation of light transport which can take many hours

for a small object on a high-end desktop system.

In this work, we address the significant bottleneck of state-of-the-

art color 3D printing techniques by proposing strategies to speed up

the included light transport simulation. We start by analyzing the

impact of a reduced number of samples used in the MC simulation.

Our experiments demonstrate the robustness of the existing refine-

ment techniques to noisy appearance predictions and, consequently,

significant speed benefits at only moderate quality loss. To further

improve the quality of the achieved results, we leverage advances

in machine learning and propose a data-driven forward appearance

model using a deep neural network.

We rely on key insights from previous work in both MC-based

color 3D printing and neural volume rendering. Based on a learn-

ing framework devised for approximating multiple-scattering in

clouds [KMM∗17], we build a full replacement for the MC forward

prediction inside an appearance refinement loop [SRB∗19]. We

depart from querying the learned predictor inside a MC estimator

and obtain the final low-variance estimate from a single inference.

Furthermore, we propose modifications to the architecture in the

form of weight sharing, that relax the cloud-specific scope.

Our improvements offer two benefits. First, our solution general-

izes better from simple geometries like cubes and spheres to more

complex 3D geometries. Second, the network is able to predict a

wider continuum of scattering parameters just from a sparse discrete

training set. We train our neural network to predict light transport in

heterogeneous volumes akin to composite multi-material prints with

spatially varying albedo and density using data from MC renderings

with complex volumetric textures. Our dataset allows the network

to learn correct predictions for more general material arrangements

than those typically found in 3D printouts. We argue that the dataset

is critical for reliable execution of the iterative refinement as it

encounters differing intermediate solutions. Moreover, as we will

show, the neural predictor is also suitable for (spectral) soft-proofing

during 3D print preparation.

With the new prediction integrated into the color 3D printing

pipeline, and running on a single, GPU-equipped workstation, our

approach outperforms previous work running on a multi-core work-

station of similar caliber by around two orders of magnitude in speed.

As a result, we enable the quality of previous methods at speeds

suitable for more practical applications, without having to resort

to massively parallel compute clusters. Finally, we also provide a

comparison of heuristic backward refinement to recent differentiable

rendering methods. While both perform on a comparable quality

level, the heuristic shows a distinct convergence benefit.

Our contributions include:

• Fast appearance prediction for fully heterogeneous volumes using

machine learning.

• Up to 300× speedup with constant quality compared to existing

3D printing pipelines.

• A synthetic dataset of scattering volumes representing a wide

gamut of material arrangements.

• Vital architecture improvements that prepare the existing cloud-

specific framework for broader arrangements.

• A comparison of differentiable rendering and heuristic material

arrangement refinement for 3D printing volumes.

2. Background

Our work is related to multiple subfields in computer graphics

from computational fabrication and machine learning (ML) to light

transport simulation with participating media and color science. In

the following, we will characterize relevant publications in these

categories and how our work links to them.

2.1. Related Work

Color 3D Printing The technological advances in multi-material

inkjet 3D printing [Str20] opened up new lines of investigation within

appearance fabrication, especially on color 3D printing. [BAU15]

introduced an error-diffusion approach to halftone continuous color

over 3D surfaces to enable full-color printing with discrete primary

materials. [BVF∗17] showed how layering primaries with different

thicknesses (contoning) can be used to control surface color and

avoid halftoning artefacts. [BATU18] showed how volumes can

be constructed to meet joint color and transparency goals on the

surface. All these methods are local color predictors as they do not

consider the effect of neighboring volume on the color, which results

in considerable blur.

[ESZ∗17] address that problem of blur on planar slabs due to

the subsurface scattering of printing materials. [SRB∗19] extended

this method to 3D surfaces with complex geometry, such as thin

features. Both methods are slow as they rely on expensive MC

light transport simulation to predict the appearance of printouts

from the volumetric material assignments. We build on the pipeline

proposed by [SRB∗19] and considerably improve the overall speed

by replacing the forward renderer with a data-driven method.

Machine learning has been applied in 3D printing to predict

the spectral reflectance of contone ink stacks [SBK∗18]. Similar to

previous local methods, this approach neglects the effects of lateral

scattering on surface sharpness and color accuracy.
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Neural Rendering Machine learning has recently become a pop-

ular technique for image synthesis and has been applied to many

problems in computer graphics. We refer the reader to the recent

survey by [TFT∗20] for a complete overview of general neural ren-

dering. In Monte Carlo rendering, machine learning has been used

for varying lighting in global illumination [RWG∗13], path guiding

in primary sample space [ZZ19,MMR∗19], importance sampling of

first-bounce contribution [BMDS19,HWZ∗20], and image denois-

ing [JK21, KBS15, BVM∗17, CKS∗17, VRM∗18, GLA∗19]. Here,

we particularly focus on data-driven approaches in conjunction with

volume rendering [KKN∗18].

Neural networks have replaced some components, such as path

computation, inside the rendering loop for compute-heavy prob-

lems like volume scattering. [VKJ19] propose a learned subsurface

scattering model for homogeneous media that samples an exitant

location over a polynomial approximation of the local shape and

infers a corresponding path attenuation. Long light paths in hetero-

geneous, forward-scattering media like clouds are the motivation

for [KMM∗17] to approximate multiple-scattering using a neural

network. They learn the contribution of a directional light source to-

wards a point inside the medium determined by MC single-scattering.

Recently, [PN19] showed a 2.5× speed improvement over the latter

work using spatial sharing of precomputed partial results.

Our approach is inspired by the work by [KMM∗17], but rather

than evaluating the network for a single path sample, we replace MC

integration altogether and predict the final radiance at once. Instead

of directional lighting we assume the simpler case of smoother

diffuse illumination, but with the added difficulty of a spatially-

varying scattering albedo unlike the constant-albedo assumption

of cloud modeling. Lastly, we improve the network architecture

by a physically motivated weight sharing scheme that substantially

reduces the network size.

Inverse Volume Rendering The ultimate goal of our work is to find

a scattering volume given an input surface appearance, a task akin to

inverse subsurface scattering. Inverse methods are used to capture

scattering properties of homogeneous materials [GZB∗13,CLZ∗20].

In a recent work [CLZ∗20] learn to predict homogeneous material

coefficients from images using a renderer for training. We employ

machine learning to accelerate the forward volume rendering and

rely on a heuristic method [SRB∗19] for the inverse reconstruction

of a heterogeneous medium.

Differentiable volume renderers [NDVZJ19,ZWZ∗19] are capa-

ble of reconstructing any volume parameter to match a target surface

appearance using stochastic gradient descent (SGD). The recent

publication of Radiative Backpropagation (RB) [NDSRJ20] allows

for practical usage of differentiable rendering without significant

time or memory overheads. We show in Section 5.4 how such a

general tool is applicable in the context of 3D print preparation and

compare against the heuristic inverse method [SRB∗19] we chose

for refinement.

2.2. Behavior of Volumetric Scattering

Volumetric light transport is typically a complex mapping between

many volume points (voxels) and fewer surface points. While the

space of possible volume assignments is wide in range, the gamut

spanning their surface appearances is somewhat limited. As can be

seen from the first two examples in Figure 2, vastly different volumes

can exhibit comparable color saturation. That is because generally

the influence of voxels decays with distance to the light source,

i.e., the surface in this case. The deeper any absorptive material is

embedded, the more it bleeds into the surrounding and affects local

contrast, absolute brightness and texture sharpness on the surface,

as can be observed across all examples in Figure 2. The overall

absorptive power of a volume is physically limited by the geometric

thickness and directly impacts the achievable color gamut.

2.3. Scattering-Aware Color 3D Printing

Previous work employed accurate MC rendering as a forward pre-

diction in an appearance optimization loop for inkjet 3D print-

ing [ESZ∗17,SRB∗19]. These works rely on heuristics that change

an arrangement of printer materials for improved texture sharpness

on the surface. The driving force in the optimization loop visualized

in Figure 3 is the difference between the predicted appearance of

the translucent materials and a given opaque target appearance. No-

tably, the optimized appearance solely covers the subsurface light

transport, as the 3D printers do not (yet) allow for full control of

surface reflectance. Thus, [SRB∗19] assume uniform, omnidirec-

tional incidence over the surface without self-shadowing or surface

inter-reflections. This enables more general viewing conditions for

the final 3D prints and prevents baking a certain lighting condition

into the volume. In this work, we adopt the same lighting strategy.

Because these methods are proven to come close to the physical

boundaries of overall texture sharpness and color reproduction in

thin geometric regions, a practical application would be desirable.

Unfortunately, practical adoption is considerably hindered by the

computational power and runtime necessary. The authors report

times comparable to thousands of core-hours, neccesitating the use

of a compute cluster for a single object print preparation.

SSS Appearance

Slice Visualization

Figure 2: Synthetic dataset examples: Monte Carlo predictions of

generated volumes in a 10 mm sphere. The generator’s output (Sec-

tion 4.1) ranges from 3D Voronoi-like textures, to surface extrusions

and thin surface coloring. Deeper voxels have less influence on color

saturation but limit contrast and edge sharpness.
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Voxelization Halftoning 3D Printing

PredictionRefinement

Figure 3: Schema of a scattering-aware 3D print pipeline

(a) Optimized print

MC 512 spp

dE ’00: 8.43

(b) Optimized print

MC 4 spp

dE ’00: 12.15

(c) Volume preview

MC 4 spp

Figure 4: High-sample MC previews showing the effect of reduced

MC sampling-rate during refinement (a, b). A single 4 spp MC

preview shows the level of quality the refinement is coping with (c).

The reasons for this inefficiency of MC path tracing are manifold:

with a high-albedo, forward-scattering material such as the white

core of 3D printouts, light paths tend to grow in length while still con-

tributing considerably. Thus, a high number of samples is required to

reduce variance – [ESZ∗17] report 500 spp. With increasing object

volume, the MC estimator gets less efficient, as light paths grow

longer and longer.

3. A First Approach to Fast Print Preparation

The major bottleneck in scattering-aware 3D printing [SRB∗19] is

the computationally demanding Monte Carlo prediction. A simple

approach to reduce the computation time of any MC-based algorithm

is to reduce the number of samples at the cost of higher variance.

We experimented with preparing a print with only four samples

per surface point and found that, against expectations, the approach

of [SRB∗19] is robust against a low-quality forward prediction.

In Figure 4, we compare this object with a preparation time of

less than 30 core hours against a reference object optimized with

512 spp taking over 3,000 core hours. At first glance, it seems like

the refinement loop averages out the noise over iterations and still

converges to a reasonable result. However, compared to the high-

sample MC refinement result, the quality degradation is visible;

the color difference values against the target, in terms of mean

CIE dE 2000, are also noticeably worse.

Also visually, a low sampling rate is not suitable for soft proofing

purposes because it exhibits distracting (color) noise as demon-

strated in Figure 4c. Image denoising methods could arguably be of

help in that case, but they are unsuitable for predictions inside the

refinement loop. Denoising images heavily relies on regularly sam-

pled neighborhood information and thus cannot trivially be applied

to our 3D voxel representations of surface radiance. Alternatively,

volume path guiding [HZE∗19] appears promising to match the re-

quirements for visual inspections but ultimately does not promise

enough speed-up for the print preparation to become practical.

With the aspiration of an approximative but fast appearance predic-

tion to the high-dimensional problem of volume scattering, we shift

our focus to data-driven methods. These have been used in the past to

accelerate light transport simulation in homogeneous [VKJ19] and

even heterogeneous volumes [KMM∗17]. The advantage of these

methods is that they do not introduce high-frequency noise artifacts

and have a constant cost per surface point, independent of scattering

values and geometric features. Deviating from previous work, we

do not employ (biased) machine learning inside an MC estimator.

Instead, we eliminate the stochastic process completely and learn to

predict the final, biased result.

4. Appearance Prediction Network

Our goal is to yield the full subsurface-scattering appearance of a

surface point given a volumetric patch around that point using a

Radiance Predicting Neural Network (RPNN) [KMM∗17, PN19].

We assume uniform, omnidirectional incidence over the surface to

account only for the subsurface part of light transport. The network

ultimately replaces the MC forward prediction in an appearance opti-

mization pipeline for 3D printing. Therefore, our learning ecosystem

is targeted towards this application.

Problem Statement Formally speaking, we try to find a function

% : W,R�+ → R+ with weights W that given a set of features �x>

around point x> results in the total in-scattered light from below the

surface. This energy is described as the integral

!> (x>,lo) =

∫

�

∫

H2
((x>,lo,x8 ,li)!8 (x8 ,li) |2>B \8 | dli d�,

(1)

where ( is the bidirectional scattering surface distribution function

(BSSRDF) between an incident and outgoing point x, and directionl

respectively. � denotes the object’s surface area,H2 the hemisphere

above the surface and !8 stands for the incoming illumination. Our

target application replicates diffuse appearances and thus we are

only interested in the outgoing radiance along the surface normal nx.

Also, the assumption of diffuse illumination allows for the inner

integral to be integrated out, leaving

!> (x>,nx>
) =

∫

�

((x>,nx>
,x8) d� . (2)

Learning an approximation of the remaining integral, we seek

weights W of the network that minimize the !2 distance between

the RPNN prediction % and a ground truth Monte Carlo simulation

!> for all ) training examples,

argmin
W

� (W) =
1

)

)
∑

C=1

(

!> (xC ,nxC
) −%(W, �xC

)
)2
. (3)

In the following, we will first describe the construction of a dataset

and how features � are derived from it. Next, we detail our contri-

butions to RPNNs, and finally, we describe their deployment. We

drop the location index x for brevity.

4.1. Training Dataset

For our supervised regression-learning task, the datasets consist of

pairs of volumes and rendered points on their surface. The volumes
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store trichromatic scattering and absorption coefficients in each

voxel. The target values represent the surface reflectance at a given

point in direction of its normal. We choose to work with a synthetic

dataset of basic shapes filled with generated volume assignments.

We summarize the properties of the dataset here and refer the reader

to our supplementary material for more details.

Shape Shape is one of the two major components affecting a vol-

ume’s appearance. Our dataset includes basic convex geometry in

the form of a cube, a rotated cube, a sphere and a thin cuboid.

The former three objects are instantiated at different sizes between

5 mm to 20 mm without additional rotation. The thin slab includes

thicknesses from 1 mm to 2.5 mm. Despite such sparse sampling of

geometric variation, we notice comparably little artifacts on arbitrary

geometry thanks to our weight sharing approach (Section 4.3).

Texture The volumes are highly heterogeneous mixtures of dis-

crete base materials. We generate procedural volumetric textures

and intersect them with geometry to produce a single volume en-

tity. Based on spatial, deterministic OpenSimplex noise [Kdo14],

the textures are assembled using a variety of parametric functions.

Through thresholding and manifold parameter dependency we build

rich procedural volumes that exhibit multiple scales of frequencies,

a wide dynamic range and different levels of chromaticity. Refer

to Figure 2 for examples of generated volumetric distributions and

their surface appearance.

Values The values of the dataset describe scattering coeffi-

cient fs and absorption coefficient fa in inverse path length [mm−1].

These belong to five measured 3D printing materials [ESZ∗17] each

with three color channels. The measurements are fitted to a constant

Henyey Greenstein phase function model with a forward scattering

lobe of 6 = 0.4. We mix data from all channels together to train a

single-channel network. For training stability, the values will also

be rescaled as detailed in Section 4.4.

As the 3D printing materials vary in both extinction coeffi-

cient ft and albedo U, our approach is the first one to tackle fully

heterogeneous volume scattering with machine learning.

4.2. Feature Descriptor

With light transport being an inherently global phenomenon, the

outgoing radiance at each point on the object’s surface depends on

both local and global volumetric distribution of materials under-

neath. But in an ML setting, training on the full volumetric data

becomes computationally intractable for larger objects and gigabytes

of dense voxel grids. Motivated by these observations, [KMM∗17]

introduced a sparse, hierarchical descriptor that extracts the most

important features to describe scattering through a point. This de-

scriptor captures the high-resolution details within the immediate

vicinity of a considered surface point but reduces (exponentially) to

a sparser representation for the distant volume.

Similar to [KMM∗17], our feature descriptor � extracts a set

of volume stencils O : at different levels : ∈ {1, . . . ,  }. Higher

(coarser) levels represent a larger portion of the volume but at lower

resolution. Obtaining a single stencil O : involves sampling the

neighborhood of surface point x and extracting a set of scattering

and absorption coefficients at |O : | = � locations @:
8
,

O : =
{

fs (@
:
1 ),fa (@

:
1 ), . . . ,fs (@

:
�
),fa (@

:
�
)
}

. (4)

For each hierarchy level, the considered volume scales by 2:−1

with descriptor dimensions staying constant (�). With all stencils

being centered around the same surface point x (Figure 5a), the

resolution of the neighborhood effectively decreases exponentially.

The final feature descriptor is a set of all stencils in the hierarchy

� = O =

⋃ 
:=1

O : . In practice, we use  = 9 levels and a stencil

dimension of � = 5× 3× 9 with [−2,−1,−4] and [2,1,4] being

corners of the index-space offsets from x.

In contrast to [KMM∗17]’s requirement for an elongated and

rotated stencil towards a directional light source, we take advantage

of diffuse illumination in our setting and simplify the data lookups.

We sample the volume with stencils axis-aligned to the voxel grid and

of cubic world-space size. Due to asymmetry in the voxel resolutions

of our 3D printer (600× 300× 940 DPI), the actual cell numbers

still differ per axis. Our stencil of 5× 3× 9 samples then covers a

volume of 211µm× 254µm× 243µm · 2:−1 and reaches 65 mm of

the surrounding on the coarsest level. Depending on channel and

material, this distance is 146 to 1560 mean-free-path-lengths.

Values in the coarser levels : > 1 are averaged from the lowest level

to reduce aliasing; volume partials outside the objects are treated as

zeros. This is especially important with our high-frequency data for

3D printing as opposed to smoother value changes in clouds. Our

filtering approach, detailed in Section 4.4, differs from mip-mapping

in order to align perfectly to the central point x on coarser levels.

4.3. Network Architecture

Our general network architecture is based on the proposal

of [KMM∗17]. Their architecture is based on a Multilayer Percep-

tron (MLP) and uses skip connections between consecutive blocks.

One of their insights is, instead of passing all inputs from the top,

each level of the descriptor O : is passed into one RPNN block

(Figure 5b). Each block consists of three dense layers (D[3,5] in

Figure 5c) in which residuals are mixed with knowledge from all

previous levels (>:−1). In the end, three dense layers D[6,8] refine

the gathered information and produce a single output value for %.

Please refer to our supplemental for a complete specification.

In the remainder, this basic architecture is referred to as the

baseline solution. In Section 5 we show that it already performs

surprisingly well in our setting. This baseline explicitly differs

from [KMM∗17]’s method in the number of levels  and the per-

ray inference with explicit MC single-scattering simulation. As our

domain features distinct media (density, heterogeneity) and illumi-

nation (diffuse) from the cloud setting, we include straightforward

adapations to avoid computational overhead.

For our architecture we incorporate further domain knowledge of

volumetric light transport and enhance the baseline by strategically

placed weight sharing (≡) that implements two physical invariants:

isometric scaling and rotational invariance.

Isometric Scaling Intuitively, the network should compute the same

function on all  levels of the hierarchical volume representation O ,
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O : ∪ O :+1

O :

(a)

·21−1

·2:−1

·2 −1

D8
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D6

≡L

≡L

≡L

· 1

2�

%

≡2
O

≡2
O

≡2
O

(b)

D3 D4

D5

≡1
O

≡1
O

≡1
O

D1 D2

>:−1

>:

(c)

Figure 5: Network Architecture: (a) visualizes the spatial relationship between levels inside one stencil O and the central point x. (b) Network

overview where D blocks mark dense layers with trainable weights,≡ blocks indicate shared weights and round edges/circles signify arithmetic

operations (∩: slicing, ∪: concatenation) The factor 1
2�

keeps values in range for training stability. (c) Detail of one RPNN block.

(a) Unifying Level Size (b) Quadrants/Octants

Figure 6: Weight sharing. (a) Hierarchy levels are rescaled to

the same size (with adjusted optical density) to enable processing

with the same weights across levels (≡L). (b) On each level, the

stencil is split in half per axis and we share weights (≡O) over

correctly rotated quadrants (octants in three dimensions) to enforce

symmetry following from rotational invariance around the black

central point x.

that is, determine how much each voxel affects the central point

of interest; the only difference is the geometric scale of the input

representation. We enforce that identity by isometrically rescaling

values according to the extent of each level of our multi-scale input.

In contrast to the well-known relationship for area and volume that

scale with powers 2, and 3, respectively, scattering coefficientsfB and

f0 scale with the power of −1 when the geometric reference frame

changes. Figure 6a visualizes that shrinking a coarser level requires

the optical density to be increased to keep the same appearance.

As shown in Figure 5b, our network scales all levels O : to the size

of the lowest (finest) level, increases optical density (·2:−1) and pro-

cesses them using the same weights (≡L). While this weight sharing

primarily reduces the network size, it also, implicitly, augments the

discrete-valued training dataset in two ways:

1. Averaging of values for coarser levels (: > 1) creates more in-

termediate data points within the convex hull and mitigates the

limitation to discrete materials.

2. Increasing the density then uniformly scales the convex hull of

(fs,fa) to larger value ranges.
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Figure 7: Input values of three O levels during training: On the

lowest level O1 (white points), these are the 15 discrete values

corresponding to CMYKW at three channels. Higher levels (with

isometrically scaled density) also contain interpolated values ac-

cording to the mixing ratios of base materials.

Figure 7 shows the convex hulls of 106 exemplary training points on

different levels. Without the isometric scaling, the network would

only see values from the lowest level (green hull, white discrete

points). Using our architecture, the network is forced to learn a

consistent function for ≡L across a larger range of values. Note how

averaging with non-scattering “air” on coarser levels also produces

less dense data points towards the coordinate origin.

Rotational Invariance Object rotation against the grid axes should

not impact the appearance. We can enforce this invariance by sharing

weights between symmetrical parts within a grid around our central

point of interest x. As illustrated in Figure 6b, we split the data in

all three dimensions in the middle (with potentially one row/column

overlap), and process all eight parts (octants), after correct alignment,

using the same filters (≡O). We apply this concept twice: First, to

each input stencil O : within the already shared level ≡L as depicted

in Figure 5c (≡1
O

). Second,at the endof the network (≡2
O

in Figure 5b)
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to produce a single output value per octant. This way, one can weakly

enforce rotational invariance without resampling data or using a grid-

less learning framework. It also implicitly augments the data without

explicitly storing duplicates.

Overall, our network consists of only eight trainable layers

(D[1,8] ) which greatly reduces the number of parameters and im-

proves training speed. We exploit domain knowledge with ourweight-

sharing and support generalization of the network to unseen volume

arrangements and material values.

4.4. Training Protocol

Our implementation is based on Tensorflow [AAB∗15] and is using

the Adam optimization algorithm [KB14] with a 0.001 learning rate.

The networks are trained on dual-socket Intel Xeon CPU E5-2680

machines (40 threads) with 256 GB memory and a Nvidia Tesla

K40m GPU (11 GB memory). Both, the implementation and the

dataset to this paper are published alongside the paper [RSB∗21].

Dataset Loading For optimization with stochastic gradient estima-

tion, the order of training samples needs to be shuffled. With the

scale of volumetric data we are working with, the datasets typically

do not fit into memory. Despite one stencil O being only 11 kB, with

200×106 surface points a dataset easily reaches into the order of

2 TB. These are sizes that cannot even be streamed from storage

quick enough for GPU processing. Thus, we employ an out-of-core

method to process larger datasets using a sliding window approach

over volumes within which we randomize samples. Channels of

multi-channel (RGB) volumes are mixed to train a single-channel

network as light transport is channel-independent.

Training on 340 volumes (sliding window of 110 volumes) took

from 32 to 44 hours for the different networks variants. In our setup,

the epoch size was set to 2M data points, and the whole training

converged after 500 epochs.

Stencil Generation With memory consumption being a concern,

we trade storage for computation and do not store explicit lower

resolution representations of volumes. Instead, we repeatedly down-

scale particular neighborhoods of a requested sample point x using

a box filter that doubles in footprint for each level as described in

Section 4.2. Efficiently extracting spatial averages on the CPU is key

to provide data points quickly for training on the GPU.

We chose to work with Summed Area Tables (SATs) that we

implement in a two-level hierarchical way to avoid issues with nu-

merical precision on larger volumes as well as reduce the memory

consumption. A hierarchical split allows for storing a sparser repre-

sentation of the SAT in constant areas by replacing their leaf-level

tile with a constant value. Using SATs, it takes a constant-time

lookup of eight values to calculate the average for any axis-aligned

box in the volume. When querying for a training sample we build a

hierarchy of volumetric patches O around a surface point x. In con-

trast to a precomputed downsampling approach, this aligns perfectly

for each x and avoids interpolation artifacts on coarser levels.

Avoiding the exploding gradient problem, we rescale all input values

to the network by a constant 1
2�

with � = 6 as visualized in Figure 5b.

4.5. Inference

Unlike previous work [KMM∗17,PN19], our RPNN is not integrated

with a path tracer. Instead, it is a full replacement of a renderer

within a scattering-aware optimization loop for fabricating textured

objects with a color 3D printer [SRB∗19]. The RPNN is able to

predict the full subsurface light transport in one go without a sep-

arate single-scattering simulation as [KMM∗17] propose. We are

able to do that, because the radiance function is smoother in our

setup for two reasons. First, the lighting setup is uniform incidence

over the surface, whereas [KMM∗17] account for sharp directional

illumination. Second, our estimates are not sampling-based, i.e.,

integrated within the loop of a path tracing renderer as previous

work [KMM∗17,VKJ19,PN19] did. Thus, the network is only asked

to predict the averaged final appearance of the subsurface scattering,

not individual paths.

On inference, we extract volumetric patches around each surface

point as described in Section 4.4 and process them with the net-

work’s computational graph in parallel batches. Each color channel /

spectral band is treated individually. This results in a linear runtime

dependency on the number of surface points and color channels.

Differing from MC rendering, the prediction quality stays constant

without requiring multiple evaluations to improve the noise level.

5. Results

We evaluate our results on geometries and textures that have not

been part of the training or validation dataset. These objects (shown

in Figs. 9 to 12) are chosen to exhibit certain properties we deem

important for our application.

Wedge (6 cm) has varying thickness from 0.5 mm to 6.5 mm. The

mirrored texture in complementary colors on each side is designed

to show cross-talk at different spatial frequencies and thicknesses.

Showcase (3 cm) features positive and negative curvature. The

white side enables judgment of the scattering on thick geometry.

Octostar (3 cm) has constant thin geometry in various orienta-

tions. This object is particularly challenging as it contains loops.

Cork Bone (4 cm) has a high-frequency texture over a wide range

of curvature, thickness and axis-orientation.

Yellow Vase (4 cm) has a rich texture and a thin handle.

Red Vase (5 cm) is partially hollow with average positive and

negative curvature.

Cat (6 cm) features thin tubes in various orientations.

Thin Plane (3 cm) is a 0.5 mm slab with textures on both sides.

The volumetric arrangement of printing materials is achieved either

by extruding a mixture of surface color into the depth or through

refinement with the method by [SRB∗19].

5.1. Scattering Compensation

We integrate our RPNN into the core of an optimization loop that

refines volumetric distributions of materials for texture sharpness

and contrast [SRB∗19]. Such scenario involves repeatedly predicting

the surface appearance in order to gauge if adjustments to the volume

have shown its desired effect. Any potential systematic errors would

get amplified over more iterations and manifest themselves in the

material arrangement.
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Figure 8: Convergence plots for the five fabricated objects in Figure 9 using three prediction methods: MC-based refinement with 512 spp,

our network-based solution and an equal-time MC prediction. Average CIE dE 2000 metric values against the target object are derived from a

reference MC (re-)prediction (512 spp) for all methods. Boxplots show the 0.05, 0.25, 0.5, 0.75, and 0.95 quantiles of the last iteration.

In a typical run, it requires 8 to 12 iterations for a refinement to

converge. Figure 8 plots the perceptual color differences between

target and simulated objects in terms of CIE dE 2000 [SWD05] at

each iteration. The figure compares a reference refinement (MC 512

spp) to our RPNN-based method and an equal-time MC rendering (4

to 16 spp, depending on the object’s surface area). For comparability,

the volumes of all three methods have been re-rendered using MC

512 spp to obtain the difference values with equal noise-level. The

comparably high level of CIE dE 2000 errors for each model reflects

the fact that exact texture reproduction is often impossible in the

presence of significant scattering [SRB∗19] for the given amount of

high frequencies in the texture or the given geometry. Note that the

error is calculated against a non-gamut-mapped target.

In most cases, our network-based refinement is on par with the

established method of a 512 spp Monte Carlo rendering. For the

challenging case of the Thin Plane our solution performs more

comparably to a low-quality MC prediction. This is explainable from

the training data, as the thickness (0.5 mm) lies outside the range of

our training set (1 mm to 20 mm).

Figure 9 depicts MC preview renderings of the objects obtained

from these refinement runs. Overall, reproductions with all three

methods show acceptable performance. The results of our RPNN-

based method are hard to distinguish from those of the MC 512 spp.

Despite remarkable performance of the low-sample MC approach

given the very noisy predictions, it shows systematically lower qual-

ity than the two other methods. For example, for this method, we

observe noise patterns on Thin Plane and Yellow Vase, reduced

sharpness on Red Vase, and color shifts (within yellowish patches)

on Cat. Visually, the distances between methods on Thin Plane

match the differences from the convergence graph in Figure 8.

The computational time required to run the compared methods is

listed in Table 1. Our method was run on a desktop-grade worksta-

tion with a single Nvidia RTX 2070 GPU and 8-thread Intel CPU.

Due to the heterogeneous hardware requirements, we are forced

to convert the high-quality method’s runtime, originally on a large

compute cluster, to a comparable competitor. Again, low-quality

MC predictions are based on equal time to RPNN-based prediction

and thus not explicitly listed. Our method performs significantly

faster with two orders of magnitude speedup for most objects. This

ratio is depending on object geometry and grows with geometric

volume. The RPNN predictor has a constant runtime per surface

point, independent of underlying curvature, geometric volume or

medium values. In contrast, with forward scattering materials and

high albedo, a MC path-tracer’s runtime is dependent on the volume

underneath each surface point, as paths can scatter more and deeper

into the medium. In our supplementary material, we provide ad-

ditional speed comparisons with variants of Mitsuba2 [NDVZJ19]

including GPU path-tracing.

Table 1: Prediction timings (per object, per iteration) for results in

Figure 9 in the equal-quality setting. MC 512 spp is recalculated

to a single 32-thread CPU system – NN is evaluated on a 8-thread

CPU + GPU system. Low-spp MC is equal-time to RPNN.

Object

Surface

points

MC

512 spp

RPNN

(Ours) Speedup

Yellow Vase 1.089×106 38745 s 128 s 303×

Red Vase 1.092×106 39206 s 140 s 280×

Cat 0.637×106 20987 s 75 s 280×

Octostar 1.833×106 29059 s 236 s 123×

Thin Plane 0.348×106 428 s 16 s 27×

Finally, we also show photographs of actual 3D printouts prepared

by both high-quality methods in Figure 10. These are fabricated

on a Stratasys J750 printer using the VeroOpaque material family,

sanded and varnished with a clear-coat. On all fabricated samples,

once again, the two high-quality methods are difficult to discern.

Exception to this trend, as mentioned before, is the fabricated Thin

Plane.

5.2. Network Generalization

In the last subsection, we showed our predictor’s performance aver-

aged over many iterations. Here, we focus on single forward predic-

tions and show raw network output values by visualizing the surface

voxel values.

Evaluating our improvements to the Radiance Predicting Neural

Network (RPNN) framework [KMM∗17,PN19], we compare differ-

ent architecture variants within our setting. Because of our weight
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Figure 9: Comparison of prediction methods inside a refinement loop: (a) target models (b) using 512 spp MC prediction, (c) using equal-time

MC prediction with 4 to 16 spp, and (d) our proposed solution using RPNN-based predictions. Refinements with low-sampling MC prediction

produce lower quality of texture reproduction compared to the other two. Timings are reported in Table 1.
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Figure 10: Comparison of photographed printouts to the rendered target models (a): refinement solution [SRB∗19] with MC-based predictions

(b), our proposed solution with RPNN-based predictions (c). The bottom object is a thin planar slab (0.5 mm thick) with two different textures

on its front and back sides.
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Figure 11: Single forward predictions comparing the generalization of network architectures to new values. The 15 mm sphere is a training

example with adjusted density. The top row is optically four times thicker, whereas the bottom row is four times thinner. Our weight-shared

architecture handles values outside the training range with less artifacts. CIE dE 2000: 0 10

sharing (≡) in multiple key locations, the number of trainable param-

eters, i.e., the learning capacity, varies between all four architectures

as illustrated in Table 2. Against intuition, the variant with octant

weight-sharing ≡O increases the number of weights because it adds

one overlapping column in each dimension (see Figure 6b) for every

layer.

Table 2: Number of trainable parameters for each architecture given

the same stencil dimensions � = 5×3×9.

Architecture Baseline

with

≡L

with

≡O

with

≡L + ≡O (Ours)

Parameters 2046871 365851 3767341 706861

Values First, we compare generalization over new scattering and

absorption values outside the range of the 15 discrete ones in the

training dataset. We take a training example and rescale its density

to simulate different scattering materials. This way, geometry and

volume arrangement have been seen by the networks before, but the

values are in a different range. Figure 11 depicts predictions for all

four variants. For both rows, the baseline architecture exhibits mis-

predictions of the appearance, whereas ours handles this unfamiliar

environment well. This demonstrates the benefits of our weight shar-

ing over levels (≡L), as they implicitly augment the discrete training

values to greater ranges as illustrated in Figure 7. In the baseline

architecture, each level overfits to a distinct set of (interpolated)

values in the lowest level’s range.

Shape The results in Section 5.1 suggest that the network prediction

performs well for arbitrary geometry. Here, we further verify this

and dissect this generalization over shape per architecture. Figure 12

shows the quality level of predictions on general geometry. Despite

training only on a very simplistic set, all architectures perform

acceptably on concave, thin regions and arbitrary surface orientation

against the stencil grid.

While RMSE error values are rather comparable over the archi-

tectures, the baseline exhibits distinct bias in multiple cases. On the

white face of the Showcase object and around the blue+green cone

where it intersects the coordinate axes, the baseline has banding

artifacts. For the Wedge it fails to predict the crosstalk in the thin

region correctly.

On the Cork Bone model the bias increases for the thinner

parts and slightly less of the weight-shared architecture. This can

be attributed to the octant weight sharing ≡O , as it is less prone

to overfitting on specific voxel arrangements in particular voxel

positions. Because the weights are shared across all eight octants

in the coordinate grid, training for individual voxel arrangements

and occupancies in every voxel index is not necessary. Instead,

training data from all eight directions contributes to the quality in

all directions. Achieving true rotational invariance would require

a spherical architecture and representation – a potential topic for

future research.

On the challenging case of Octostar, the level sharing ≡L

introduces considerable bias on the hollow bridge regions between

colored corners. Architecture variants without this feature, such as

the baseline, exhibit this problem less pronounced. We discuss this

limitation in further detail in Section 6.

5.3. Application: Spectral Prediction

Our data-driven method can also be used for spectral volume pre-

dictions in a relatively straightforward manner. This application has

important implications, as spectral 3D printing has shown promising

results [SBK∗18]. While, in this paper, we show only spectral pre-
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Figure 12: Single forward predictions comparing four architecture variants over prediction error (RMSE) for general geometry. The baseline,

a basic adaptation of [KMM∗17]’s RPNN, is compared against our weight sharing over levels ≡L and octants ≡O . The objects’ unique

features are discussed in Section 5. CIE dE 2000: 0 10
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(a) MC 128 spp (b) RPNN (Ours) (c) Difference

Figure 13: Spectral predictions for an object formed by virtual

spectrally-defined materials. Our network generalizes well over scat-

tering parameters from only 15 discrete values and can accurately

predict continuous spectral curves. CIE dE 2000: 0 10

dictions, spectral scattering compensation for 3D printing remains

an exciting direction for future work.

Because the network is trained on a single color channel only, it

can be repeatedly applied to predict individual spectral bands. In

Figure 13, we demonstrate that our method matches the quality of

an MC spectral rendering. This object is filled with virtual materials

whose scattering properties are hand-crafted to mimic the spectral

properties of a CMYKW ink set. The network predicts, just like

the MC renderer, 31 spectral bins, from 400 to 700 nm, which are

converted into RGB using standard procedures [SG31]. For predict-

ing arbitrary spectral curves, a good generalization over scattering

values is important. Our network architecture achieves that, as we

demonstrate in the previous subsection. As with any spectral image,

one can easily vary the diffuse illumination spectrum afterwards

and predict the look under different illuminants. This result also

highlights the benefits of using a network for soft proofing, because

the runtime speedup we report above leaves room for more accurate

colorimetric prediction within a practical timeframe.

5.4. Differentiable Rendering Comparison

With the recent publication of Radiative Backpropagation (RB) [ND-

SRJ20], time and memory costs of differentiable rendering methods

become viable for inverse reconstruction of heterogeneous media.

The paper contains experiments that hint at a potential application

in the field of 3D print preparation. Naturally, the question follows

how a heuristic-based iterative scheme [SRB∗19] compares to such

a generic optimization framework. The available implementation of

the experiments require us to recreate their specialized setup and

compare both inverse methods in a more simplified environment.

As the backward heuristic is independent of the used forward model

(MC or RPNN) we chose MC for consistency.

The setup presented in [NDSRJ20] differs from a traditional 3D

printing setup in the following attributes:

• Constant density across the volume.

• Isotropic phase function.

• No material discretization (halftoning) in the iteration loop.

This is important to consider for speed (density) and quality (latter

two) comparisons. Please refer to our supplemental material for a

detailed description of the scenario, a discussion on timings and

more results. Here, we summarize the outcome:

Target

(a) RB
[Grey]

(b) RB
[1 layer]

(c) Heuristic
[1 layer]

(d) RB
[Heuristic]

dE00 Slices

Figure 14: Comparing Radiative Backpropagation (RB) [ND-

SRJ20] with heuristic refinement [SRB∗19] on different initializa-

tions (a-d). The best result for RB (a) matches the quality of (c).

On the same initialization (b) details are less pronounced. When

continuing (c) with RB, the SGD optimization moves only slightly in

the local minimum (d). CIE dE 2000: 0 10

0 50 100 150 200 250 300

Iteration

10−2

10−1

M
S
E

Convergence

RB [Grey]

RB [1 layer]

Heuristic [1 layer]

RB [Heuristic]

Figure 15: Convergence behavior of Radiative Backpropagation

(RB) [NDSRJ20] and heuristic refinement [SRB∗19] for results

shown in Figure 14. The heuristic converged after 24 iterations and

visually matches the quality of RB [Grey] after 300 iterations.

With stochastic gradient descent (SGD) being a local optimiza-

tion method, the starting condition is important. Figure 14 compares

cutouts of four optimizations. Choosing from several initializations,

the best result for RB (a) compares in visual quality to the heuristic

refinement (c) with (c) being slightly sharper. For the same initial-

ization as (c), RB leaves texture details washed out (b). The most

interesting result is (d) where RB is initialized with the result from

(c). There, it minorly adjusts edge sharpness, but overall stays visually

constant in the same local minimum.

Looking at the resulting volumetric distribution, slices are very

different for each method. The heuristic (c) prioritizes compression

of absorptive material close to the surface while RB finds different

local minima depending on the initialization. Being designed for a

particular initial condition the heuristic will not work stable with

other initializations.

In conclusion, differentiable rendering is a general tool that re-

quires further research to be applicable for practical 3D print prepa-

ration. Besides the required technical updates (proper volume mod-

eling and material discretization), we see that the generic SGD

optimization applied to the translucent printing materials produces

a less crispy appearance. SGD’s convergence behavior is sensitive

to initialization and visual quality depends on the used error metric.

A simple metric like MSE is not indicative of perceptual consid-
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erations and more perceptual metrics have yet to be developed for

surfaces in voxel representation.

Most importantly, in the presence of long mean-free paths, the

SGD optimization requires much more iterations to converge. As

can be seen in Figure 15, the heuristic converges after 24 iterations

whereas SGD optimization on MSE requires a long-tailed optimiza-

tion to increase detail fidelity. When running both methods with the

same forward predictor, which is the dominant factor, the absolute

speed difference follows the same trend.

6. Discussion

Overall our results confirm that double (nested) weights sharing is

a good way to regularize training, reduce weights, increase general-

ization and inject domain knowledge in an RPNN architecture.

With the generalization over values our published, pre-trained

network can be useful even for future materials without re-rendering

or re-training, given their measured scattering and absorption coef-

ficients lie within the range illustrated in Figure 7. In case of vastly

different value ranges one can still leverage the published dataset by

re-rendering and subsequent re-training.

The results also show limitations of the method. When it comes

to very thin objects like our Thin Plane, the network does not

extrapolate well from the training data. More examples with reduced

thickness would be a first solution to solve that. Also, the architecture

exhibits artifacts with highly-concave and closed-loop geometry like

our Octostar and parts on the Showcase. In an attempt to find

the root-cause, we included similar objects to the training dataset,

but the train- and test-time metrics didn’t improve. We suspect the

stencil representation being ambiguous between a completely solid

object with air around and an open loop on higher levels.

Compared to MC rendering, our method provides faster evaluation

times, which is independent of scene complexity and density of the

medium. Besides practicality of the print preparation pipeline, it is

also an important step for learning to generate a material distribution

for a target surface appearance. Only with a fast forward predictor

one can prepare enough training data to approach the backward step

with machine learning.

Our training data is obtained by means of virtual simulations

with an idealized voxel model. In reality, the printing process might

induce partial voxel mixing, non-smooth interfaces and anisotropic

scattering effects w.r.t. the layerorientation. Thus,a machine learning

approach based on extensively measured data seems preferable, but

requires a set of costly fabricated samples.

In a comparison with differentiable rendering, heuristic refine-

ment performs on an equal quality level, partially with perceptually

slightly “crisper” reproduction. But in terms of convergence, a naïve

implementation requires ten times more iterations. An exciting trait

of our RPNN forward model is that it is also differentiable and can

deliver surface gradients w.r.t. volume patches. Untangling gradients

shaped like our stencil O for a volumetric reconstruction is left to

future work.

7. Conclusion

In this work we proposed a high-fidelity 3D printing pipeline that

matches previous work in quality, while typically being 100 to 300

times faster. The key to this was combining the strengths of a state-

of-the-art heuristic iterative optimizer for 3D color print preparation

with a neural predictor for surface appearance from heterogeneous

subsurface scattering.

As we have shown, despite the limited generality of any data-

driven model, the network generalizes well to unseen geometry and

material values. This robustness lends our solution for real-world

deployment. In effect, this is the first time that full heterogenous

material optimization for 3D-print preparation becomes possible

within time frames in the order of the actual printing time.
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