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Figure 1. Cross-renderer remapping of spatially varying material. Mesh (left); Blender-Ward

(center)→ Cycles-GGX (right).

Abstract

BRDF models are ubiquitous tools for the representation of material appearance. However,

an astonishingly large number of different models are now in practical use. Both a lack of

BRDF model standardization across implementations found in different renderers, as well

as the often semantically different capabilities of various models, have become a major hin-

drance to the interchange of production assets between different rendering systems. Current

attempts to solve this problem rely on manually finding visual similarities between models,

or mathematical similarities between their functional shapes, which requires access to the

shader implementation, usually unavailable in commercial renderers. We present a method

for automatic translation of material appearance between different BRDF models that uses

an image-based metric for appearance comparison and that delegates the interaction with the

model to the renderer. We analyze the performance of the method, both with respect to ro-

bustness and also visual differences of the fits for multiple combinations of BRDF models.

While it is effective for individual BRDFs, the computational cost does not scale well for spa-

tially varying BRDFs. Therefore, we also present two regression schemes that approximate

the shape of the transformation function and generate a reduced representation that evaluates
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instantly and without further interaction with the renderer. We present respective visual com-

parisons of the remapped SVBRDF models for commonly used renderers and shading models

and show that our approach is able to extrapolate transformed BRDF parameters better than

other complex regression schemes. Finally, we analyze the transformation between specular

and metallic workflows, comparing our results with two analytic conversions.

1. Introduction

Computer-generated imagery workflows commonly involve a broad range of mod-

elling and rendering tools, each targeting different goals and requirements [Schregle

et al. 2013], and the exchange of data between these tools is hindered by incompat-

ible representations. As a consequence, existing model assets frequently have to be

redesigned to be used in other software, resulting in large modelling overheads. This

is particularly true in the case of material models. So far, a great number of BRDF

models has been developed for appearance representation, but a lack of a standard-

isation and renderer-specific implementation details lead to visual deviations even

between identically named reflectance models.

The current abundance of BRDF models reflects the fact that no single model is

able to realistically reproduce the full range of available measured materials [Brady

et al. 2014; Guarnera et al. 2016]. However, for a given material represented using

one model, it is often possible to find a new set of parameters that approximates its

appearance with a different model. Many existing rendering systems support such

remapping of material parameters to address the incompatibility between models and

to remain backwards-compatible to older versions of their software [Pharr et al. 2016;

Corona 2017]. That said, these remappings are often based on manually determined

or heuristic relations between the functional shapes of the models; that requires access

to the model implementations, or oversimplifications by assuming one-to-one corre-

spondence between individual parameters of both models will occur. The problem

is exacerbated by popular renderers and graphics engines using proprietary shading

models [Unr 2017; Uni 2017].

An automatic solution to this problem needs to consider the constraints of the real-

world scenario where a material is interchanged between different third-party render-

ers. In this situation, we do not have access to the implementation of the shaders,

only to the model parameters and the resulting renderings. To address this prob-

lem, we present an image-based method for the remapping of BRDFs that works for

closed-source renderers, assuming no knowledge of the model implementations. We

analyze the robustness of the method applied to a set of BRDF models, and we dis-

cuss common issues and strategies to improve the stability of the method in different

types of materials.
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In addition, we present a regression scheme to generate a reduced representation

of the transformation that evaluates instantly and without further interaction with the

renderer, allowing for fast remapping of entire parameter texture maps. We show

visual comparisons of the remapping of spatially varying BRDF models (SVBRDF)

that illustrate the ability of our approach to provide a close match between different

renderers, even when remapping between very different shading models.

2. Related Work

2.1. Reflectance Remapping

Traditionally, appearance modelling dealt with finding reflectance models that would

agree well with real-world observations [Nicodemus et al. 1977]. Accordingly, a large

body of work on fitting of reflectance models to measured data exists [Marschner

1998; Weyrich et al. 2008; Guarnera et al. 2016]. In contrast, little academic atten-

tion has been paid to the direct translation between BRDF models, apart from initial

studies of the well-posedness [Sztrajman et al. 2017] and perceptual quality of the

transformations [Guarnera et al. 2018].

Among commercial products, the arguably most prominent software to remap re-

flectance from one model to another is Allegorithmic’s Substance Painter [Allegorith-

mic 2017], a dedicated tool to author appearance for a wide range of target platforms.

In order to address the variability in renderer-specific BRDF models and implementa-

tions, the software contains various export functions that employ manually optimized

heuristics to remap BRDF parameters for specific target rendering engines [Damez

Oct. 2017]. Manual creation of such heuristics, however, can be costly and does not

necessarily lead to optimal results.

Other examples of available products are renderers, such as PBRT [Pharr et al.

2016] or Corona [Corona 2017], that remap reflectance from an older versions’ legacy

representations. The latter switched from a variant of the Ashikhmin-Shirley BRDF

[Ashikhmin and Shirley 2000] to a GGX microfacet BRDF [Walter et al. 2007; Burley

2012] and remaps BRDF specifications by analytically matching the width of the

models’ specular lobes [Krivanek Jul. 2017].

2.2. Appearance Comparison

Quantifying (dis)similarity between two BRDFs is a problem encountered in any

BRDF fitting work, and our remapping is no exception. Ngan et al. [Ngan et al.

2005] follow Lafortune et al. [Lafortune et al. 1997] and employ a simple L2 distance

between cosine-weighted BRDF values. We find that such a metric puts dispropor-

tionate emphasis on matching BRDF peaks at the expense of tails, which can result in

appearance deviations.
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In their follow-up work, Ngan et al. [Ngan et al. 2006] argue for an image-based

metric, where the dissimilarity between two BRDFs is modelled as the difference

between rendered images with the respective BRDFs under natural illumination. Re-

cently, Havran et al. [Havran et al. 2016] confirmed the validity of the image-based

methodology through psychophysical experiments and, furthermore, designed spe-

cialized geometries that provide richer information on material properties than the

simple sphere used by Ngan et al. We follow this image-based strategy for two rea-

sons: first, it has been repeatedly shown to correlate well with the perceived mate-

rial differences; second, our setup lends itself well to rendering images using any

(unknown) BRDF, whereas obtaining individual BRDF values using an off-the-shelf

renderer may be more difficult.

We focus our efforts on finding a remapping scheme that results in parameters

that vary smoothly with respect to changes in the source-material parameters. For

uniform BRDFs, this is an expected behavior of the transformation, and deviations

are suggestive of problems in the optimization, such as finding local minima or output

parameters that only look similar in a particular scene setting. For spatially varying

(SV)BRDFs, the smoothness of the mapping is even more important, because the ma-

terial parameters across the surface are computed by interpolation. If the parameters

vary abruptly, this is likely to produce incorrect SVBRDF remappings, even if the

appearance of each individual texel is correctly matched.

3. Remapping of Uniform Materials

The process of BRDF remapping is similar in structure to the fitting of BRDFs, where

we start with a target BRDF model and an initial guess of the parameters, and we want

to fit reflectance data, generally measured from a real-world material. This involves

the minimization of the difference between the appearances of the BRDF and the

data, performed through nonlinear optimization of the parameters of the BRDF model

(Figure 2).

In the case of BRDF remapping (Figure 3), the scheme is analogous; however,

instead of using measured data, we are now matching the appearance of the target

Figure 2. Broad scheme for BRDF fitting.
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Figure 3. BRDF remapping scheme.

BRDF model with another source BRDF model. In this scheme, we assume no direct

access to the implementation of the BRDF models. In particular, the target model is

assumed to belong to an external renderer in a typical usage scenario of our technique.

In order to perform an appearance comparison under these conditions, we measure the

difference in image space, by comparing rendered images of a single scene using each

of the two BRDF models.

Thus, in each step of the optimization, we only need to be able to generate new

renders of this scene with the target BRDF. The image difference is then computed

with an L2 metric in color space, which is common practice in the context of BRDF

fitting [Ngan et al. 2006] (other metrics are used as well, but no single distance metric

has emerged as a superior choice for general BRDF fitting).

In the remainder of this paper, we will consider three optimization strategies to

remap a (uniform) BRDF specification to parameters of a different model. Section 5

will then present our approach to extend the remapping to spatially varying appear-

ance.

3.1. Optimization Strategies

A simple optimization scheme that attempts to fit all model parameters at once (as

shown in Figure 3) often leads to local minima during the optimization, due to the

coupling between the diffuse and specular terms in the model. In Section 4.1, we

provide a systematic analysis of the stability of the remapping scheme. In order to

improve the stability of the optimization, we test the following two variants of our

remapping scheme.

Two-stage Remapping

In this scheme, the diffuse and specular terms are remapped independently (Figure 4).

This is not unlike BRDF fitting to real-word data where diffuse and specular re-

flectance may be separated optically [Debevec et al. 2000] or statistically [Weyrich

et al. 2006] before conducting separate fits. In our case, it requires source renderings

of the diffuse-only, and purely specular components, respectively. In the end we ob-
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Figure 4. BRDF remapping scheme in two stages. Diffuse and specular components are

remapped independently.

tain remapped versions of each term that are merged in the remapped target BRDF

model.

Three-stage Remapping

The two-stage remapping assumes an independence of diffuse and specular terms that

might not hold true for some layered materials. The three-stage scheme (Figure 5)

recovers the coupling between both terms by using the results of the two-stage scheme

as a good starting guess for a subsequent remapping that optimizes all parameters

simultaneously, reducing the chance of falling into local minima.

Figure 5. BRDF remapping scheme in three stages.

4. Analysis of Uniform Material Remapping

We tested our approach using three renderers: Mitsuba; Blender’s internal preview

renderer; and Cycles, a physically-based renderer that is currently the most commonly

used off-line renderer in Blender. Due to differences in how light-source intensities

are specified across renderers, we further had to match irradiance before remapping

an external BRDF to a Mitsuba BRDF. This was done by a global scale determined

from the ratio of diffuse-only renderings from the two renderers.
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Our uniform BRDF remapping code calls Mitsuba in its optimization loop, and

thus the remap can take source BRDFs from arbitrary renderers while the target BRDF

has to be from within Mitsuba. In Section 6, we will show that this does not represent

a limitation for the remapping, since the transformation to Mitsuba can be used as an

intermediate step in a sequence of remappings:

source BRDF → Mitsuba BRDF → target BRDF.

4.1. Uniform Fitting Strategies

We begin by evaluating the three optimization strategies for remapping of uniform

BRDFs that were introduced in Section 3.1. We performed a systematic study of

these remapping schemes via an analysis of the robustness of the transformation that

links the parameters of the models. We did this for multiple combinations of BRDF

models that are available in Mitsuba [Jakob 2010] (Ashikhmin-Shirley, Beckmann,

GGX, Phong, Ward). For the sake of brevity, we focus here only on a few of these

combinations, to demonstrate a few common effects we encountered when dealing

with remapping between different BRDFs within Mitsuba.

The nonlinear optimization of parameters was performed using the Least Squares

TRF (Trust Region Reflective) method [Jones et al. 2001–; Branch et al. 1999], en-

forcing positive values on the target remapped parameters. For the image-based ap-

pearance comparison, we generated linear RGB renderings in HDR (512 × 512) of

a simple scene: a sphere of unit radius located at the origin illuminated by a point

lightsource (rl = 3, θl = 45◦). This produces a sampling of only a two-dimensional

slice of the BRDF space, which depends on the relative position of the illumination

source. Although we find that the result of the optimization is not highly influenced

by the choice of light position, in Section 9 we will discuss its effect on the visual

match between BRDF models.

4.1.1. Conductors

Our analysis of the remapping of conductors comprises 60 materials from Mitsuba’s

database. In Figure 6, we show the results for a remapping from Ashikhmin-Shirley

(source) to Ward (target). In these implementations the specular terms in both mod-

els are described by an RGB specular parameter and the roughness (single-channel),

essentially characterizing the intensity and the spread of the lobes. We show the

remapping of a specular parameter in Ashikhmin-Shirley to an analogous parameter

in Ward (both single-channel), for multiple fixed values of roughness. The informa-

tion provided by the IOR parameter in the standard BRDF interface in Mitsuba is here

condensed into the Fresnel coefficient F0, which can be expressed in its more general

form as (with c the complex IOR)

F0 =
(c− 1)(c∗ − 1)

(c+ 1)(c∗ + 1)
. (1)
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Figure 6. Remapping of conductors from Ashikhmin-Shirley to Ward. Detail of parameters

in Mitsuba, and plot of specular reflectance (Ward) vs Fresnel coefficient (AS).

The expected output of the remapping is a smoothly varying correspondence be-

tween source and target parameters. In a typical usage case, the user would expect

small changes in the source material to correspond to small changes in the exported

appearance. We will show that a deviation from this behavior usually signals numer-

ical instability due to a decreasing capacity of the target model to match the source,

or the occurrence of local minima during the optimization. The stability of the trans-

formation will prove crucial when we deal with the remapping of spatially-varying

BRDFs (Section 5) that are reconstructed by interpolation of multiple uniform mate-

rials.

In Figure 6, the transformation shows a smooth behavior for most materials, but

exhibits instabilities for parameters that are remapped to specular reflectance > 1.

These can be traced back to this particular implementation of Ward, where the values

of specular reflectance are trimmed to ensure energy preservation, and it is repre-

sentative of the implementation-dependent behavior that we may find in renderers.

Most of the instabilities found during our study shared this behavior of exhibiting

well-localized regions in parameter space where the remapping becomes unreliable.

After filtering the unstable cases from Figure 6, Figure 7 shows the results for

a round-trip remapping, where we transformed the parameters back to the initial

Ashikhmin-Shirley model. The result is a straight line of unit slope, which shows

that in this particular case, the parameters reliably go back to their original values
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Figure 7. Round-trip remapping of conductors from Ashikhmin-Shirley to Ward and then

back to Ashikhmin-Shirley. Remapped Fresnel coefficient F0 vs original F0.

after the two remappings. This speaks for the general robustness of the approach

and indicates that we generally can recover the original appearance after a remapping

takes place.

Figure 8. Single-stage remapping of dielectrics from Ashikhmin-Shirley to Ward. Detail of

parameters in Mitsuba for both models, and plot of fitted specular reflectance (Ward) vs input

IOR (AS). The optimisation becomes unstable around IOR= 1.3.
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4.1.2. Dielectrics

The reflectance of dielectric materials includes an additional diffuse component. The

intensity of the specular term is similar for all light wavelenghts and is usually ap-

proximated by a single-channel parameter (e.g., the index of refraction). In Figure 8,

we show the results of remapping from Ashikhmin-Shirley to Ward, using a single-

stage optimization with both diffuse and specular parameters. The plot corresponds to

a parameter sweep of the IOR in Ashikhmin-Shirley for fixed diffuse and roughness

parameters.

In this case, the instability signals a change of regime in the optimization. In

Figure 9, we show renderings that correspond to the points at both sides of the jump

in the curve of Figure 8. In one case the remapping is working correctly, and we

obtain a similar appearance in both models. In the other case, we observe that the

optimization arrives at a local minimum, and the remapping is unable to recover the

characteristic highlight from the source.

Figures 10(a) and 10(b) show the results of the two- and three-stage approaches,

developed to improve the stability of the remapping process and illustrated in the di-

agrams of Figures 4 and 5. The two-stage approach effectively recovers a smooth

relationship between the parameters, by avoiding the coupling between the diffuse

and specular terms. With the additional optimization step of the three-stage approach,

in some cases we were able to slightly reduce the optimization error with respect to

the two-stage approach, but unfortunately the coupling between diffuse and specular

terms still causes several instabilities that make this second approach unreliable. In

summary, in order to generate a robust remapping we need to avoid the coupling of the

diffuse and specular components, by remapping each term independently (two-stage

method). In the following sections we will proceed by basing all BRDF transforma-

tions on this method.

Figure 9. Source model (left), remapped target (center) and SSIM error (right) corresponding

to IOR = 1.3 (top), and IOR = 1.34 (bottom) in the unstable single-stage remappings of

Figure 8. In the bottom row the optimization fails to reproduce the highlight of the material.
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(a) Two-stage remapping. (b) Three-stage remapping.

Figure 10. Remapping of conductors from Ashikhmin-Shirley to Ward illustrating specu-

lar reflectance vs Fresnel coefficient F0 for multiple values of roughness. The three-stage

remapping shows multiple instabilities.

5. Remapping of Spatially Varying Materials

Spatially varying materials are commonly defined using texture maps that provide the

value of each model parameter across the surface. In Figure 11 we display the decom-

position of an SVBRDF asset into texture maps, describing four different parameters

involved in the shading process (diffuse reflectance, specular roughness, specular re-

flectance, and surface normals).

The remapping of the corresponding spatially varying material to a different BRDF

model or renderer requires the remapping of each individual texel, which can be per-

formed using one of the schemes for uniform BRDF remapping from the previous

section. However, the optimization required by the remapping of a single material

Figure 11. Decomposition of 3D asset into a low-resolution geometry and four texture maps

describing the spatially varying parameters of the material (diffuse reflectance, roughness,

specular reflectance and normals).
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usually takes a few minutes, which is acceptable for uniform BRDFs but intractable

for high-resolution texture maps with hundred-thousands of texels.

To solve this problem we employ a regression scheme that utilizes the data from

the remapping of uniform materials to learn the relationship between parameters in

both BRDF models involved. Through parameter sweep over the source model, we

generate a database of uniform material parameters and their remapped counterparts

in the target model that is used as input for a regression scheme. Thus, we are able

to generate a reduced representation of the transformation between the two models,

which can then be evaluated efficiently without the need for further optimization or in-

teraction with the renderer. Note that, even though our uniform remapping implemen-

tation requires the target BRDF to be defined within Mitsuba, we can reverse the role

of source and target in the regression process, thus implementing BRDF remappings

in the opposite direction. Furthermore, in Section 6, we will show the implementation

of chained remappings that allow the transformation between arbitrary renderers and

BRDF models:

T1: BRDF1 → Mitsuba BRDF T2: BRDF2 → Mitsuba BRDF

T−1

2
T1: BRDF1 → Mitsuba BRDF → BRDF2

5.1. Regression Scheme

Figure 12 shows an example remapping between two implementations of Ward: from

Mitsuba to Blender internal renderer. The left plot shows a one-to-one nonlinear

relationship between the two “roughness” parameters, illustrating that the implemen-

tations of Ward differ non-trivially in the influence of the roughness parameter. The

Figure 12. Remapping from Mitsuba-Ward to Blender internal-Ward, with data points and

SVR regression. (Left): Remapping of roughness. The nonlinear mapping shows that the

two variants of Ward are distinct (left); Remapping of specular reflectance with color indicat-

ing roughness. The transformation follows different mappings depending on the roughness

parameter (right).
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right plot offers a different set of cross-sections through the same remapping of pa-

rameter spaces: for a wide range of roughness values, we show varying specular

reflectance values of the Mitsuba-Ward map to Blender-Ward model parameters. In

contrast with the one-to-one correspondence between parameters found in the left

plot, here the transformation traces a different mapping depending on the roughness

parameter, signaling a complex relationship between multiple parameters in the mod-

els that would be hard to recover by a manual mapping of model parameters.

The mapping of BRDF parameters can be approximated by learning methods: we

tested both support vector regression (SVR) [Chang and Lin 2011; Pedregosa et al.

2011] and fully-connected neural networks [Paszke et al. 2017] with similar results.

In Figure 12, we show example regressions obtained using the ǫ-SVR method with

radial basis functions (RBF), which requires the tuning of three hyperparameters:

C (error penalty), ǫ (error margin), and γ (radial function dumping factor). For this

purpose we implemented a simple gradient descent scheme that was able to converge

to appropriate hyperparameter values in a few minutes on the CPU (a Python imple-

mentation of the SVR fitting can be found in the additional material). Once trained,

the SVR is able to correctly model and interpolate parameter values inside the region

sampled by the training dataset. However, in Section 7 we will show cases where

this method fails to extrapolate outside of the sampled region of parameter space used

for training, leading to unexpected changes in appearance, and we will present an

improved parametric regression scheme that is able to extrapolate properly.

5.2. Sampling of Parameters

An accurate regression of the mapping between two BRDF models usually requires

a dense sampling of the parameter space in the source model. In most cases we used

a uniformly-spaced sampling of parameters, sweeping through 30 values for each

parameter in the source model, taking advantage whenever possible of the fact that

usually the parameter sweep can be done on a single channel. In Section 8, we will

analyze a case with a large number of parameters to be sampled. Here we will perform

a random sampling of the parameter space.

In general, the valid range of values for the parameter sweep varies across model-

pairs and regions of the parameter space. In Figure 12 (right), we observe that the

largest valid value for specular reflectance is 0.3 (higher values land in values above 1

in the target renderer, thus causing instabilities). For higher values of roughness,

this limit is reached much sooner. In Section 7, we will analyze a case where the

remapped parameters fall outside of the sampled domain, and the regression scheme

is unable to properly extrapolate the shape of the transformation. We will show that,

under certain circumstances, it is possible to produce an accurate regression with only

a sparse sampling of the parameter domain.
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6. Results of Cross-renderer SVBRDF Remapping

In Figure 12 we analysed the remapping between two implementations of Ward: from

Mitsuba to Blender internal renderer. Once the compact representation of the trans-

formation is generated, it can be used to perform the remapping of every texel in

the parameter maps of an SVBRDF. In Figures 13 and 14, we display the roughness

and specular maps for Mitsuba-Ward and their corresponding remapped versions in

Blender internal-Ward.

As previously seen, the transformation of the roughness (Figure 12 (left)) depends

only on the original roughness, and thus the remapping of a roughness texture map is

essentially a tonemapping operation, as observed in Figure 13. In contrast the remap-

ping of the specular parameter (Figure 12 (right)) depends on both the roughness and

the specular parts, which produces a remapped specular map that inherits details of

the roughness map (Figure 14).

Figure 15 displays the rendering of a 3D asset using the texture maps from Fig-

ures 13 and 14. The corresponding renderings show the efficacy of the remapping:

Figure 13. Roughness texture maps. Original Mitsuba-Ward (left); remapped Blender-Ward

(right).

Figure 14. Specular texture maps. Original Mitsuba-Ward (left); remapped Blender-Ward

(right).
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Figure 15. SVR remapping of SVBRDF from Mitsuba’s default Ward implementation to

Ward within Blender’s internal renderer. Corresponding renderings using Mitsuba (top-left)

and Blender (top-right); specular-only renderings with SSIM error (SSIM = 1 indicates ab-

solute similarity) (bottom).

faint visual differences are limited to surface parts that face both camera and light

source. The bottom row shows specular rendering in isolation, including an SSIM er-

ror image (SSIM = 1 indicates absolute similarity); removing the diffuse term, which

is very similar across the renderers, highlights visual differences further.

Figure 16 displays a remapping from the Mitsuba Ashikhmin-Shirley shader to

Cycles’ GGX model. Once again, we show cross-sectional plots of the parameter

remapping function, as well as specular-only renderings with difference image. This

result is of particular interest, as the specular lobe of GGX significantly differs from

traditional microfacet models, such as Ashikhmin-Shirley. With its heavy tails, the

specular term tends to add persistent sheen to a surface, making it challenging to

match the appearance of a model with more compact reflectance lobes. Considering

that, we believe that our remapping preserves the overall appearance exceptionally

well.

15



Journal of Computer Graphics Techniques

Image-based Remapping of Spatially Varying Material Appearance

Vol. 8, No. 4, 2019

http://jcgt.org

Figure 16. SVR remapping from Mitsuba Ashikhmin-Shirley to Cycles GGX. Remapping

of roughness (top-left); remapping of Fresnel coefficient F0 with color indicating roughness

(top-right); specular-only renderings with difference image (bottom).

Figure 17. SVR remapping from Mitsuba GGX to Cycles GGX. Remapping of roughness

(top-left); remapping of Fresnel coefficient F0 with color indicating roughness (top-right);

specular-only renderings with SSIM error (bottom).
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Even within implementations of GGX, however, we observe slight differences

between renderers, as can be seen in Figure 17 where we display a remapping from

Mitsuba-GGX to Blender Cycles-GGX. Here the relationship between parameters

is linear and only shows slight deviations from the identity transformation for the

Fresnel coefficient F0. The simplest explanation for this behavior is a small difference

in the parameterization of F0 in each model, although other contributions can not be

discarded (e.g., small differences in the light sources in each renderer).

In general, we find the remapping scheme stable enough to enable chaining of

transformations, such as the one shown in Figure 18: Blender internal-Ward → Mitsu-

ba-Ward → Mitsuba-GGX → Blender Cycles-GGX. This makes it conceivable that

even within a large collection of BRDF models, a compact spanning graph of pre-

learned transformations is sufficient to map from any model to another one.

Apart from the inherently increased sheen due to GGX, the result remains remark-

ably close to the input. Note that in spite of working with three different renderers,

the most noticeable differences occur when remapping from Ward to GGX within the

same renderer (Mitsuba). This hints that the BRDF model’s shape is the main factor

determining the remappability of a material, despite other additional differences that

may be in play between renderers (e.g., point light parameters and distance depen-

dence, post-processing, etc.).

Figure 18. SVR chained remapping from Ward (Blender) to GGX (Cycles) via two interme-

diate BRDF models. Blender internal-Ward, Mitsuba-Ward, Mitsuba-GGX, Blender Cycles-

GGX, SSIM error (left to right); Blender internal-Ward, Blender Cycles-GGX (bottom with

diffuse term).
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7. A Parametric Regression Scheme

So far we have shown examples of remappings where the material parameters (i.e.,

the texels of the asset texture maps) lie inside the region of parameter space that was

pre-sampled and used for SVR training. However when applying the SVR remapping

to a general SVBRDF material which does not meet this requirement, we found that

the SVR failed to extrapolate the behavior of the transformation outside of the sample

space, thus generating fringe changes in the resulting asset.

However, upon careful scrutiny of the functional shapes of the transformations

from Section 6, which present common properties along different BRDF model pairs,

we are able to formulate a parametric function which capitalizes on these properties

and models the behavior of the transformations with only a few parameters. Below

we analyze the properties of these transformations and formulate the parametric ap-

proach for regression (an implementation of the parametric fitting can be found in the

additional material).

In the roughness plots of Section 6 (Figures 12, 16, 17) we empirically observe

that the target roughness depends on the source roughness alone, with no further in-

fluence by other source parameters. This behavior is easy to model with a simple

univariate polynomial fit of low degree (≤ 4). In contrast, the remapping of the spec-

ular parameter depends on both the roughness and the specular parts, requiring a more

complex functional for the regression. However, the complexity of the regression can

be drastically reduced by observing that for a fixed value of roughness, the relation-

ship between specular parameters results in a very low-degree polynomial.

In particular, when the specular parameters are linearly related to the intensity of

the BRDF lobe, the specular transformation results in straight lines (in the case of the

IOR, as seen in Figure 10(a), the nonlinear change of variable of Equation (1) can be

used to recover the specular reflectance). Thus, our parametric model for the specular

transformation results in

s2(s1, α1) = k(α1) · s1,

where s and α refer to specular and roughness parameters, and the subindices 1 and 2

indicate source, and target, respectively. With this parametric model, all that we have

to do is compute the slope of the curves for each value of roughness, and then use this

data to fit the nonlinear relationship k(α1) between roughness and slope. This can be

done with a univariate nonlinear fit with only a few coefficients c, such as

k(α) = c0 + c1e
−c2α + c3e

−c4α
2

.

In Figure 19 we show the remapping of a spatially varying material by means

of both parametric (bottom-center) and SVR (bottom-right) regressions. Due to the

incorrect extrapolation of the SVR, the resulting remapping has suffered a very no-

ticeable change in chromaticity. In contrast, the functional shape of our parametric
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Figure 19. Plots showing the remapping from Mitsuba-Ward to Mitsuba-Ashikhmin-Shirley.

The dataset covers a limited portion of the specular reflectance parameter range (top). Ren-

derings of the remapping of a spatially varying material scratched gold) using two different

methods for regression. Original Mitsuba-Ward (bottom-left); remapped Mitsuba Ashikhmin-

Shirley with our parametric scheme (bottom-center); remapped Mitsuba Ashikhmin-Shirley

with SVR (bottom-right). Illumination: Tabac Plant environment map [Vogl 2010].

function assumes a linear extrapolation of the specular values. This means that in

the transformation of parameters, the three channels of each texel are multiplied by

the same factor, thus leading to a conservation of the chromaticity. The numerical

results of the parametric fit for all the previously analyzed cases can be found in the

Appendix, for both roughness and specular regressions

8. Remapping Between Metallic and Specular Workflows

So far most of the examples we have shown correspond to a specular workflow, where

the material is specified by at least seven parameters, usually corresponding to diffuse

and specular reflectances (RGB), and a single-channel roughness or glossiness. In

some renderers, materials are specified through a metallic workflow, which provides

the user with a reduced number of intuitive parameters: an albedo (RGB), and two
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single-channel parameters for metallicness and roughness. The reduction of param-

eters is based on the observation that in most common materials there is no need for

both diffuse and specular reflectances to have three channels, as explained in Sections

4.1.2 and 4.1.1. For metallicness = 0 we have a dielectric and the albedo plays the

role of diffuse reflectance. For metallicness = 1 we obtain a conductor and the albedo

determines the color of specular reflectance. Intermediate values of metallicness pro-

vide a blend between these two sets of materials. This is reflected in Equation (2)

which expresses the transformation from the metallic to the specular parameters:

diffuse = albedo · (1− metallicness),

specular = lerp(0.03, albedo,metallicness)

= 0.03 + metallicness · (albedo − 0.03), (2)

where we have chosen a default specular value 0.03 for dielectrics. Although working

with different parameters, the underlying BRDF model is the same for both cases

and hence all materials described within the metallic workflow have an exact match

in the specular workflow. However the opposite is not true, because of the higher

number of free parameters in the specular workflow, and so in general the conversion

from specular to metallic is ill-defined. Equation (3) displays the analytic inverse of

Equation (2), where i takes the values of the three color channels:

albedoi =
speculari + diffusei

2

(

1 +

√

1−
4 · 0.03 · diffusei

(speculari + diffusei)2

)

,

metallicnessi =
speculari − 0.03

albedoi − 0.03
. (3)

In general this will generate different values of metallicness for each channel, and so

we need to decide how to convert them into the single-channel parameter from the

metallic workflow, for which there is no established best practice. We will show two

different strategies to perform this conversion and compare them with an implemen-

tation of our remapping scheme.

Figure 20 shows the uniform remapping of parameters from the metallic to the

specular workflow, comparing with the analytic conversion provided by Equation (2).

The dataset of remapped parameters uniformly spans the full range of values in the

metallic workflow (albedo and metallicness) in a single color channel. The result

is a perfect match between remapping and analytic conversion, which reaffirms the

validity of the method.

The inverse conversion from specular to metallic parameters presents multiple

additional obstacles for remapping:

• The conversion cannot be done on a per-channel basis; the optimization needs

to be done simultaneously with all channels.
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Figure 20. Single-channel uniform remapping from metallic to specular parameters using

the GGX BRDF model (Mitsuba). Remapped parameters are plotted against the analytic

remapping from Equation (2). Remapped diffuse reflectance vs analytic diffuse reflectance

(left); remapped specular reflectance vs analytic specular reflectance (right).

• In the metallic workflow there is no separation between diffuse and specular

terms, hence we need to optimize both terms at the same time.

• As explained, in the general case the conversion is ill-defined, and we do not

have a reference analytic conversion with which to compare.

As analyzed in previous sections, this combination of factors makes it likely that

the optimization will fall into local minima for many materials, and this is indeed

what we find. However, we can avoid this by remapping a dataset of parameters that

we know to have a well-defined inverse transformation. We generate this dataset of

specular parameters by converting a uniformly random generated dataset of metallic

parameters with Equation (2). The convergence of the optimization is further helped

by the fact that the underlying BRDF model is the same in both workflows.

Once the dataset is generated and remapped, we can fit it with a regression scheme

as explained in previous sections and use this learned function to convert materials in

the entire parameter space. For this regression, the parametric scheme from Sec-

tion 5.1 is not applicable for this transformation, and so we must rely on a general

purpose regression, such as described in Section 7. In this case, because of the large

number of source and target BRDF parameters, we decided to perform the regression

with a neural network, which offered a faster convergence in previous tests. The archi-

tecture used was a simple fully-connected network with one hidden-layer (6×300×4)

and ReLU activation.

In Figures 21 and 22 we show the remapping of SVBRDF assets from specu-

lar to metallic parameters. The results are compared with analytic remappings using

Equation (3) and two different strategies for computing the single-channel metallic-

ness: 1) a simple mean and 2) a mean weighted by the albedo values. In both figures
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Figure 21. SVBRDF remapping of hydrant from specular to metallic parameters. From left to

right: reference, remapping (SSIM: 0.98), analytic remapping with mean metallicness (SSIM:

0.91) and with wighted mean metallicness (SSIM: 0.97).

Figure 22. SVBRDF remapping of ‘blue plastic’ material from specular to metallic parame-

ters. From left to right: reference, remapping (SSIM: 0.995), analytic remapping with mean

metallicness (SSIM: 0.9802) and with wighted mean metallicness (SSIM: 0.993).
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we observe that our approach produces the best visual match of materials, followed

by the mean weighted analytic transformation.

9. Illuminant Position

As previously discussed in Section 4.1, our scheme for uniform BRDF remapping

utilizes a rendered scene with point-light illumination to provide a partial sampling

of the material’s reflectance. The main requirement that we found for the light po-

sition during our experiments is that a large-enough proportion of the pixels in the

resulting renderings should be illuminated, so that the optimization is able to con-

verge and we obtain a stable transformation. This needs to happen for all considered

combinations of parameters, including materials with low roughness where the high-

light does not spread far from the direction of specular reflection. An obvious choice

for this purpose is headlight illumination, which maximizes the size of the specular

Figure 23. Mean dissimilarity error (1 - SSIM) for three SVBRDF materials as a function of the

rotation angle of the illuminating environment map (Tabac Plant [Vogl 2010]). Remapping

scene with frontal (red) and non-frontal point light (blue). Higher values indicate higher error.

Scratched gold (top-left); blue plastic (top-right); bronze statue (bottom).
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highlight in the rendering, thus improving the characterization of the lobe. However,

the symmetry of the scene configuration poses multiple potential issues: (1) an over-

representation of the retroreflective lobe in the sampling; (2) a repeated sampling of

directions which in isotropic BRDFs are equivalent and do not provide new infor-

mation; (3) for many BRDF models, insufficient coverage of the parameter space to

constrain all parameters, for instance the Fresnel term.

In Figures 24–26 we display the remappings of spatially-varying materials with

two different light settings: frontal light (top) and non-frontal light with θl = 45◦

(bottom). Visual differences between these two settings for remapping are hard to

spot, but in some cases a slight decrease of the global dissimilarity is apparent when

using non-frontal light. This is confirmed by the plots in Figure 23, where we can

observe the corresponding mean dissimilarity errors of these materials as we rotate

Figure 24. Parametric remappings of scratched gold with frontal (top) and non-frontal light

(bottom). Illumination provided by the Tabac Plant environment map [Vogl 2010] at rotation

angles 0◦ (left side) and 272◦ (right side). Within each side: original material in Mitsuba-

Ward (left); remapped in Mitsuba-Ashikhmin-Shirley (center); SSIM difference (right).

Figure 25. Parametric remappings of blue plastic with frontal (top) and non-frontal light

(bottom). Illumination provided by the Tabac Plant environment map [Vogl 2010] at rotation

angles 0◦ (left side) and 272◦ (right side). Within each side: original material in Mitsuba-

Ward (left); remapped in Mitsuba-Ashikhmin-Shirley (center);. SSIM difference (right).
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Figure 26. Parametric remappings of bronze statue with frontal (top) and non-frontal light

(bottom). Illumination provided by the Tabac Plant environment map [Vogl 2010] at rotation

angles 0◦ (left side) and 272◦ (right side). Within each side: original material in Mitsuba-

Ward (left); remapped in Mitsuba-Ashikhmin-Shirley (center); SSIM difference (right).

the environment map illumination (note that we refer to a rotation of the illumination

used for the renderings, not the one used in the remapping). Videos of remappings

with rotating environment illumination can be found in the supplemental material.

10. Conclusions

We presented a method for translation of material appearance between different BRDF

models and across different renderers, which uses an image-based metric for appear-

ance comparison, delegating the interaction with the model to the renderer. We an-

alyzed the performance of the method, both with respect to robustness and visual

differences for multiple combinations of BRDF models. While it is effective for indi-

vidual BRDFs, the computational cost does not scale well for spatially varying BRDFs.

Hence, we also presented two regression schemes that are able to generate reduced

representations of the transformations between BRDF models, that evaluate instantly

and without further interaction with the renderer, allowing the remapping of SVBRDF

texture maps. Moreover, the resulting transformations lend themselves to chaining,

enabling effortless transitions between BRDF models. The first scheme is based on

support vector regression and requires a relatively large dataset of uniform remapping

data to train, covering the full domain of parameter space. The second regression

method presented is based on a nonlinear parametric fit of the uniform remapping

data which capitalizes on common properties observed in transformations between

brdf models. Although the assumptions used to construct this parametric scheme

make it potentially less general than SVR, we show that it provides a better extrap-

olation of parameters outside of sampled data. In addition, because the parametric

scheme models the transformation of specular parameters as a linear relation, the

sampling can be very sparse. As a real-world application we implemented the remap-
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ping between specular and metallic workflows, comparing the results with analytic

transformations. Finally we analyzed the effect of the lighting used during uniform

remapping in the quality of renderings of spatially varying materials, and confirmed

that headlight illumination leads to a slight increase in visual differences.

A. Parametric Fits

Mitsuba (Ward) → Blender internal (Ward)

αB = 1.01αM − 0.13α2

M
− 0.41α3

M
+ 0.24α4

M

sB = sM
[

−43.4 + 43.6e−0.0017αM + 0.115e−2.21αM

]

Cycles (GGX) → Mitsuba (Ashikhmin-Shirley)

αM = 0.78αC + 1.31α2

C
− 1.86α3

C
+ 0.61α4

C

sM = sC
[

−0.067 + 1.43e−0.692αC − 0.547e−6.4αC + 0.0002/αC

]

Mitsuba (GGX) → Cycles (GGX)

αC = 0.98αM + 0.09α2

M
− 0.14α3

M
+ 0.066α4

M

sC = sM
[

1.05− 0.187e−23.45αM + 0.036e−116.4αM

]

Mitsuba (Ward) → Mitsuba (GGX)

αG = 1.135αW − 0.766α2

W
+ 0.102α3

W
+ 1.08α4

W

sG = sW
[

−944 + 944.82e−0.00046αW + 0.476e−4.786αW

]

Mitsuba (Ward) → Mitsuba (Ashikhmin-Shirley)

αAS = 1.04αW − 0.388α2

W
0.332α3

W
+ 0.25α4

W

sAS = sW
[

−512.13 + 512.75e−0.00057αW + 0.398e−3.12αW

]
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source code/svr remapping.py Similar to parametric remapping.py, this script trains an

SVR to perform the remapping.
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