
Anisotropic Point-Based Fusion
Damien Lefloch

Computer Graphics Group
University of Siegen

Email: damien.lefloch@uni-siegen.de

Tim Weyrich
Dept of Computer Science
University College London

Email: t.weyrich@ucl.ac.uk

Andreas Kolb
Computer Graphics Group

University of Siegen
Email: andreas.kolb@uni-siegen.de

Abstract—We propose a new real-time framework which
efficiently reconstructs large-scale scenery by accumulating
anisotropic point representations in combination with memory
efficient representation of point attributes. The reduced memory
footprint allows to store additional point properties that represent
the accumulated anisotropic noise of the input range data in the
reconstructed scene. We propose an efficient processing scheme
for the extended and compressed point attributes that does
not obstruct real-time reconstruction. Furthermore, we evaluate
the positive impact of the anisotropy handling on the data
accumulation and the 3D reconstruction quality.

I. INTRODUCTION AND PRIOR WORK

Following the seminal paper by Rusinkiewicz et al. [1],
and further popularized through the availability of affordable
structured-light and Time-of-Flight depth cameras and the
prominent KinectFusion system [2], interactive real-time scene
acquisition from hand-held depth cameras has developed much
momentum, enabling applications in ad-hoc object acquisition,
augmented reality and other fields.

Previous work has mainly focused on representing the
accumulated model using implicit volumetric voxel grids in
which truncated distance fields are accumulated in order to store
the probability of a voxel being at the observed surface. As this
representation is rather inefficient in terms of spatial adaptivity
and scalability, various approaches have been proposed to
overcome this restriction, e.g., by adopting the spatial position
and orientation of the voxel grid [3] or by hashing and book-
keeping of smaller voxel bricks [4]. An alternative point-based
representation has been presented by Keller et al. [5].

Common to all these systems is a three-stage process,
consisting of the following components; see also Fig. 1:

1) Depth Map Preprocessing: The range map delivered by
the Kinect camera is preprocessed, e.g., using bilateral
filtering, and additional data such as normals are estimated
for each range map pixel.

2) Camera Pose Estimation: Based on the current obser-
vation and the so far accumulated model, the camera
pose is estimated using an Iterative Closest Point (ICP)
approach [6].

3) Depth Map Fusion: In this step the registered input range
map is accumulated into the existing model representation.

One aspect that has insufficiently been addressed so far is
the anisotropic nature of the input data. The spatial uncertainty
of an individual pixel of the input range map is determined by
two factors:

a) the lateral pixel extent which is given by the lateral
resolution of the camera chip and the intrinsic parameters
of the camera, i.e, focal length, principal point and lens
distortion, in combination with the depth value, i.e. the
distance from the camera, and

b) the depth noise of the sensor, which itself strongly depends
on the underlying range measurement principle.

There are already some works on noise models for range
devices, e.g., for Time-of-Flight (ToF) cameras such as the
new generation Kinect One. Falie and Buzuloiu [7] present
a noise model based one phenomenological considerations,
which predicts a range error as a function of the amplitude
and the distance value of a specific pixel. For an overview of
denoising approaches for ToF cameras, refers to the survey
of Lenzen et al. [8]. Often simple Gaussian noise models are
assumed, e.g., in the context of motion capturing [9].

Depth Map

Fusion

Camera Pose

EstimationPreprocessing

Depth Map 

Input Depth Map

Surface Rendering

Fig. 1. The KinectFusion pipeline.

Maier-Hein et al. [10] introduce a method in order to improve
ICP-based registration of ToF-based range maps with respect to
a given polygonal model in the context of medical applications.
However, as of yet, the anisotropy of the input data has not
been considered in the context of real-time scene acquisition.

In this paper we present a new real-time framework for
efficient reconstruction of large-scale scenery incorporating the
anisotropy of the input data. Our system uses an enhanced
point-based representation similar to Keller et al. [5] which is
capable of handling anisotropy in the depth map fusion step;
see Fig. 1. Our main contributions are:
• a novel symmetric anisotropic distance measure that is

applied to establish more robust correspondences between
input and model points in the fusion step, and

• a novel anisotropy-aware fusion technique for accumula-
tion of anisotropic input data into the model,

• a data compression scheme for point-based model repre-
sentation implying an efficient storage of attributes per-
point.

Furthermore, we present a solid evaluation on both, the



data compression scheme and the anisotropic accumulation
approach, and their impact on the reconstruction quality.

II. OVERVIEW POINT-BASED FUSION

Our approach shares many design aspects with the point-
based KinectFusion method proposed by Keller et al. [5]. The
main components of the online, point-based scene reconstruc-
tion are the following stages; see Fig. 1.

a) Depth Map Preprocessing: Denoting a pixel of the
input frame as u = (x,y)> ∈ R2, an initial 2D vertex map
Vi(u) ∈ R3 is generated from the depth map Di(u) ∈ R for
frame i by applying the inverse of the intrinsic camera matrix
Ki. Additional information is computed and stored in attribute
maps: a normal map Ni, the point radius map Ri.

b) Depth Map Fusion: Given a valid camera pose and
the corresponding vertex and attribute maps, the geometric data
is fused into the global model. The global model consists of a
simple list of attributed 3D points. Model points evolve from
unstable to stable status based on the confidence they gathered.
The confidence essentially counts how often a point has been
observed by the sensor. Data fusion first projectively associates
points in the input depth map with the points in the global
model by rendering the model from the current camera position
as an index map. If point partners are found, the input point is
merged with the best matching model point using a weighted
average for the point position and attributes. If no merge partner
is found for an input point, the new point is added to the global
model as an unstable point. The global model is continuously
cleaned up over time to remove outliers due to visibility and
temporal constraints, removing isolated observations that have
not been confirmed by further observations over a specific
period of time.

c) Camera Pose Estimation: All stable model points are
passed to the visualization stage which reconstructs a dense
representation of the model’s surface including the associated
attributes, i.e., normal and size, using a surface splatting
technique. To estimate the 6DoF camera pose, the model
points are projected from the previous camera pose, and a
pyramidal dense iterative-closest-point (ICP) [2] alignment
is performed using the synthesized model map and the input
depth map. The resulting relative transformation rigidly links
the previous to the new global camera pose.

Regarding the rendering, which is not further discussed in
this paper, we stick to the simple splat surfel rendering used
in Keller et al. [5] which trades off the rendering quality in
order to achieve a fast synthetic view generation. For visual
user feedback, we use a simple Phong illumination model
coupled with a fast approximation of ambient occlusion known
as Screen-Space Ambient Occlusion (SSAO) [11].

III. ANISOTROPIC POINT-BASED FUSION

We introduce a new reconstruction framework that stores
as an additional per-point property the 3×3, anisotropic noise
covariance matrix Σ(u).

A. Anisotropy

So far, real-time reconstruction methods with range maps
have ignored the anisotropic nature of the range data. The
anisotropy results from the fact, that the reliability of a 3D
point in a range map is much higher in lateral direction than
in axial direction, as the lateral uncertainty is only limited
by the pixel size and, due to the perspective mapping, by the
distance. The axial uncertainty is defined by the noise of the
acquisition device, i.e., the Kinect camera in our case, which,
for example, increases for larger object-to-camera distances.
Maier-Hein et al. [10] model the standard deviation as a
function over distance. We use the model for the Kinect camera
proposed by Nguyen et al. [12] in order to compute the variance
of the noise based on the z-distance.

Given a covariance matrix Σp for a point p ∈ R3, the
Mahalanobis distance of any other point q ∈ R3 can be
calculated based on the inverse of the covariance matrix Σ−1

p ,
which is also called reliability matrix:

dp,Σ(q) =
√
(q−p)>Σ

−1
p (q−p) .

We directly store the symmetric 3×3 reliability matrix Σ−1
p

leading to 6 additional values per point.
Similar to Maier-Hein et al. [10], we build the data associa-

tion before data fusion using our anisotropic model (see Sec. II
for a short description of the data association). While they
use the Malahanobis distance based on the inverse of the sum
of covariance matrix (Σp +Σq)

−1, we minimize the sum of
both Malahanobis distances dp,Σ(p−q)+dq,Σ(p−q) in order to
choose the best associated corresponding pair for accumulation.
The main reason of this approach is performance. As we store
the reliability matrix Σ−1

p , applying Maier-Hein et al. [10]
would require three additional matrix inversions per point-pair
comparison. We conducted several experiments to compare
our simple minimization to the one proposed in [10]. All
experiments were leading to the same result, i.e, same points
pairs. This validates our choice to keep our data association
for a better efficiency.

B. Anisotropic Fusion

The accumulation of range data in the anisotropic case
has to consider the non-uniformity of distance measurements
given by the depth sensor. Similar to the geometric fusion, the
anisotropic noise model should be refined over time. Therefore,
the geometric and anisotropic fusion procedures have to be
reformulated by convex combinations for accumulating of the
point’s mean and the accumulation of the reliability matrix.

Considering two different points pi with covariance matrices
Σpi , i = 1,2, and point q lying on the line segment between p1
and p2, a meaningful definition of an anisotropic split ratio β

of q with respect to p1 and p2 is given by

q =
dp2,Σ2(q)

dp1,Σ1(q)+dp2,Σ2(q)
p1 +

dp1,Σ1(q)
dp1,Σ1(q)+dp2,Σ2(q)

p2

= (1−β )p1 +βp2, with β =
dp1,Σ1(q)

dp1,Σ1(q)+dp2,Σ2(q)
. (1)



Within the context of point-based fusion, the points p1, p2 and
q may refer to the model point, the corresponding input point
and the resulting merged point, respectively.

Since q is the resulting merged point, we need to reformulate
the anisotropic split ratio β as given in Eq. (1). Defining q
as affine combination q = (1−α)p1 +αp2 for some α ∈ [0,1]
and exploiting, that the Mahalanobis distance simply scales
the isotropic distance values for a given direction, from Eq. (1)
we get

β =
dp1,Σ1((1−α)p1 +αp2)

dp1,Σ1((1−α)p1 +αp2)+dp2,Σ2((1−α)p1 +αp2)

=
αdp1,Σ1(p2)

(1−α)dp2,Σ2(p1)+αdp1,Σ1(p2)
. (2)

Inverting Eq. (2), we get the proper affine weight α that needs
to be applied to achieve the desired anisotropic split ratio β

α =
βdp1,Σ1(p2)

(1−β )dp2,Σ2(p1)+βdp1,Σ1(p2)
.

Analogously, the anisotropic split ratio β is used to accumulate
the point normals.

Regarding the model accumulation of the covariance repre-
sented in the same coordinate system, we apply the approach
proposed by Kerl et al. [13]. They perform the covariance
accumulation by adding the reliability: given input and model
covariance matrices Σin

i and Σmod
i for a corresponding input

and model point for frame i, respectively, the fused covariance
matrix reads as

(Σ̂mod
i )−1 = (Σmod

i )−1 +(Σin
i )
−1 . (3)

Note that in order to transform the covariance matrix Σmod
imod

to
the same coordinate system of the input frame Σmod

i , we have
to apply the following transformation:

Σ
mod
i = (R>i→WC ·Rimod→WC)Σ

mod
imod

(R>i→WC ·Rimod→WC)
> ,

with Rimod→WC and Ri→WC referring to the rotational part of
the transformations Timod→WC and Ti→WC to pass from local
to world coordinates (WC), respectively.

IV. IMPLEMENTATION

notation: In the following, we adopt the data type nomen-
clature given by [14] where uintb refers to a positive integer
with b bits representing integers on

[
0,2b−1

]
and floatb is

the floating-point representation with b bits in total describing
sign, mantissa and exponent.

In order to store the symmetric reliability matrix (Σmod
i )−1

for each point inside our model representation, an efficient re-
duction of memory footprint for the point properties is required
to preserve the scalability of the overall acquisition system.
Salas-Moreno et al. [15] propose a point-based accumulation
model which directly reduces the total number of points by
efficiently encoding points belonging to the same planar surface
using a new planar representation. The method was shown to
be robust and efficient, but it is mainly designed for indoor
scenes, which comprise many planar regions.

Fig. 2. Advanced rendering of the extracted surface mesh given by our
point-based reconstruction framework (Totempole scene).

Since we would like to reduce the storage cost of the
point-based fusion framework for any type of data set (see,
for example, Fig. 2 for a very large scene from Zhou
and Koltun [16]), we decide to directly compress the point
properties. A naive way to store all required point properties that
is, position, normal, radius, confidence counter and timestamp,
would require 9 float32 scalars leading to a total of 288
bits per point.

To compress the surface normal property, we adopt the
method proposed by Praun and Hoppe [17] designed to
compress unit vectors efficiently. This method first maps the
unit sphere to a unit octahedron that is later on unfolded to the
z= 0 plane. This method is known as one of the best approaches
to compress unit vectors rapidly and robustly. Recently a survey
of unit vector compression by Cigolle et al. [14] shows that the
simple octahedron compression (non-numerically optimized)
using 16 bits encoding (i.e. enc16) for both texture coordinates
leads to a mean error angle of 0.37709◦ whereas the one using
32 bits (i.e. enc32) leads to a mean error of 0.00131◦. At a
first glance, a mean error of less than half a degree might appear
negligible, we show that the impact of the 8 bits encoding on
the accumulation significantly coarsens the final reconstructed
model. Fig. 3 gives a visual comparison of different encoding
schemes applied to the Totempole data set.

The point position is also compressed by partially adopting
the same method. First, all model points are expressed in
their local coordinate referring to the camera position from
which they were last observed. The original point based fusion
method [5] represents the model points in world coordinate.
Practically, once a fusion of an input point and model point
occurs, the new average model point will be represented in the
camera coordinate system of the current input frame i. This
representation enables us to encode the vertices using their
viewing direction and their polar distance. We can use the same
procedure to encode the viewing ray as we apply to the normal
vector. We further assume that consumer depth cameras only
provide range measurements up to a maximum radial distance
of 10 meters with millimeter precision. Thus, we can store the
polar distance ρ expressed in meters in one uint16 scalar



Fig. 3. Comparison of three different compression schemes at frame 380 of the Totempole scene using our SSAO surfel splatting. The compression enc16
(left) leads to a coarser model compared to the original, uncompressed version (center). However, enc32 (right) shows negligible visual difference. The
second row refers to the color coded normal maps.

applying the following encoding ρe = b6553.5 ·ρe1. Our vertex
position encoding requires only 32+16 = 48 bits per model
point in contrast to the usual 3 ·32 = 96 bit storage.

The drawback of this method is that it requires to save all
camera pose transformations Ti→WC in order to transform all
model points to common world coordinates. Nevertheless, in
Sec. V we show that this additional storage requirement has
very little influence on the achieved compression ratio.

The remaining properties, i.e., radius, timestamp and confi-
dence counter, are also encoded using a simple quantization.
We store the timestamp t in a uint16 scalar, leading to
a maximum frame id of 65535. Using a 30 Hz camera, it
represents more than 30 minutes acquisition time which is
sufficient for most applications. The confidence counter is
described as a uint8 scalar since it is usually clamped to a
maximum value of 255 to allow for adaptation to changes in
the scene [2]. Similar to Weise et al. [18], the radius property
is computed by using the following formulation

r = δpix ·
max(sx,sy)

f
· d
〈n, [0,0,1]>〉

, (4)

where f , sx and sy are given by the intrinsic parameters of the
camera and represent the focal length and the pixel size in
horizontal and vertical directions, respectively. δpix represents
the half of the pixel’s diagonal

√
2/2. Whereas d and n denote the

Cartesian z-distance and the surface unit normal of the current
input point, respectively. As seen previously, the z-distance
cannot exceed 10 meters, and a valid range measurement of
depth camera usually occurs when the surface normal describes
an oblique angle smaller than 80◦ with the camera direction [5]).

1b·e refers to the closest integer rounding operation.

Thus, a maximum radius size of an input point is defined
by rmax =

5
√

2
cos80◦ ·

max(sx,sy)
f . Additionally, we can consider the

intrinsic parameter’s ratio max(sx,sy)
f to be in any case smaller

than 1/200 which leads to a maximum radius size of rmax ≈ 0.2
meters, which is a quite conservative upper bound for real-
world applications. Thus, we encode the radius as a uint16
scalar giving re = b327.675 · re.

In summary, the proposed encoding results in a storage of 2
float32, 3 uint16 and 1 uint8 scalars (120 bits + 8 bits
alignment cut-off) for the set of point properties in contrast
to the naive storage of 9 float32 scalars (288 bits), which
leads to a compression ratio of 1 : 2.25. We show that our
compression scheme leads to a negligible difference to the
original point-based fusion method (see below for a detailed
evaluation).

V. RESULTS

In order to evaluate the proposed method, we use four
different data sets. Two real-world data sets are used to evaluate
the proposed compression method without storing or processing
the anisotropy. Two simulated data sets are used to obtain a
quantitative comparison of the isotropic reconstruction with
our novel anisotropic accumulation scheme (with compression
enabled in both instances).
Totempole: This data set is provided by Zhou and Koltun [16]

and consists of 8,853 RGB-D frames (≈ 5 minutes
of acquisition time) from a Kinect-like camera.
Fig. 2 shows the reconstructed scene given by our
framework. Note that for this data set only pseudo-
groundtruth of camera pose and geometry is given, based



on the approach by Zhou and Koltun. (Available on
http://web.stanford.edu/∼qianyizh/projects/scenedata.html)

Office: This data set is provided by Kerl et al. [19] and
contains 2,509 RGB-D frames (≈ 1.4 minutes of acqui-
sition time) given by a Kinect-like camera, see Fig. 4.
The data set includes the camera path groundtruth
acquired by an infrared tracking system and was de-
signed for SLAM benchmark applications. (Available on
http://vision.in.tum.de/data/datasets/rgbd-dataset)

Buddha: This data set is generated using our Time-of-Flight
simulator, which is an enhanced version of Keller and
Kolb [20], applied to the Stanford Buddha model scaled
to 3 meters height. It is composed of 237 depth frames
disturbed with Gaussian noise on the computed polar
distance using the formulation of Nguyen et al. [12]
for the Kinect structured-light camera. This formulation
relates the standard deviation of the z-distance noise to
the measured distance via a second-degree polynomial
and was modeled using images of planar regions located
at different distances.

Statue: This second simulated data set is generated in the same
way as the Buddha scene and consists of 286 frames.

Fig. 4. Overview of the Office scene data set from [19].

A. Encoding Evaluation

In order to evaluate our compression representation, we use
two data sets given by the Totempole and the Office scenes. The
following three representations are compared to each other:
naive storage: refers to the original point-based fusion frame-

work [5] (uncompressed model).
enc16: compresses normals and viewing rays in our low-

resolution, 16-bit representation.
enc32: compresses normals and viewing rays in our high-

resolution, 32-bit representation.
The Totempole data set is used to highlight the visual quality

and the storage ratio. We showed that the proposed compression
scheme retains the visual reconstruction quality if the enc32
compression is used for unit vector representations; see Fig. 3.

Concerning the storage gain, the final Totempole reconstructed
model is composed of 7,822,519 oriented points. The naive
storage method (9 float32 scalars) will lead to a memory
usage of 269 MB where our new compression scheme leads to
a memory usage of 104.4 MB (+ 7.5 MB alignment cut-
off). However, our method requires the storage of all the
camera poses (8,853 × 12 float32 scalars) which enlarges
the memory footprint by 415 KB, i.e., by 0.4%.

The Office data set is used in order to quantitatively evaluate
the compression scheme against the camera tracking and the
reconstructed geometry quality. Fig. 5 shows the camera center
position errors computed by the Iterative Closest Point (ICP)
algorithm for the naive storage, the enc16, and the enc32
encoding schemes. Whereas the enc16 encoding leads to
a higher error in terms of the camera pose estimation, the
enc32 encoding gives camera pose errors very close to the
uncompressed method. Additionally, we evaluate the quality of
the geometry model reconstructed by each compression scheme.
Since no geometry groundtruth is given, we generated a pseudo-
groundtruth by applying our reconstruction framework without
compression using the groundtruth camera poses. This pseudo-
groundtruth is compared to three different reconstruction meth-
ods that all use the ICP algorithm to track the camera motion.
Fig. 6 shows the Euclidean distance errors of the enc16,
enc32 and uncompressed storage. Note how negligible the
difference is between the enc32, and the naive storage. For a
better view on the distance error statistics comparison, refer to
Tab. I.

frameId

C
am

er
a 

ce
nt

er
 e

rr
or

s 
(m

)

0.1

0.2

1000 2000

naive

enc16

enc32

Fig. 5. Camera position errors using the pose groundtruth with the naive
representation and the two different compression schemes for the Office data
set.

B. Anisotropic Fusion Evaluation

In order to evaluate the benefit of the anisotropic fusion, it
is important to have proper groundtruth of the scene geometry.
Therefore, we used the simulated data sets, i.e., the Buddha
and the Statue scenes. We run our approach for two different
scenarios processing the full depth sequences with known
groundtruth camera poses. In order to evaluate the anisotropic



0.00

0.08

Fig. 6. Color-coding of the geometry distance errors of the Office scene for different compression schemes. The reconstruction using the enc16 (left), the
uncompressed (center) and the enc32 encoding (right). The images are generated using the CloudCompare software [21].

Methods enc16 naive enc32

Error Distances 24.0±18.3 12.2±10.31 13.0±10.6
mean±std (mm)

TABLE I
DISTANCE ERROR STATISTICS FOR THE Office SCENE EXPERIMENT.

fusion, we use the groundtruth camera poses given by our
simulator in order to avoid any external error introduced by
the ICP algorithm. First, the data is processed using a simple
isotropic fusion as it is commonly done for KinectFusion-like
approaches. Whereas the other scenario consists of processing
the data sequence with anisotropic fusion. Both resulting point
clouds are compared to the groundtruth mesh. For each point,
the minimal distance error to all mesh faces is computed.

Fig. 9 (left) shows a close view of the point distance errors
for the isotropic case, and 9 (right) concerns the anisotropic
fusion for the Buddha scene. One can clearly see that the
anisotropic fusion noticeably reduces the overall point distance
errors. Fig. 7 shows the statistic of the errors depending on the
confidence counter attribute, i.e., the number of point merges.
For the isotropic case, the distance error of model points with
a confidence counter greater than 30 is increasing. Fig. 10
visualizes these points and their distance errors, which are
mainly located around the lower part of the Buddha. Due to
the specific camera path, this region of the scene has been
observed by many frames with a comparably large range noise.
Apparently, the isotropic accumulation has more difficulties
with this strong anisotropy than our anisotropic approach. The
total mean distance errors is 1.67±1.4249 mm for the isotropic
fusion whereas the anisotropic fusion leads to a total mean of
1.4856±1.3452 mm.

The simulated Statue scene confirms our observation, even
though the increase of quality is less significant than for the
Buddha scene. The error statistics in Fig. 8 show a comparable
error statistics for points up to 30 merges and again an
improvement beyond 30 merges. The points with a confidence
counter greater than 30 are shown in Fig. 11.

10 20 30 40 50 60 70 80
Confidenceycounter

D
is

ta
nc

ey
E

rr
or

y(
m

m
)

0

1

2

3

4

5

6

mean-std

mean+std

mean

isotropy

anisotropy

Fig. 7. Comparison of distance error statistics of the Buddha scene for the
isotropic and anisotropic accumulation. The mean and the standard deviation
are plotted. The confidence counter is related to the number of merges for the
model points.

C. Performance

We demonstrate the efficiency of our method by evaluating
the performance of the different compression schemes and the
anisotropy in isolation. Tab. II shows a detailed summary of
the timings. Note how the compressed encoding is faster than
the original method for the generation of model maps. This
is easily explained by the fact that loading the compressed
point attributes into a vertex buffer requires 4 floats, whereas
the naive storage requires 9 floats per point. Furthermore, the
anisotropy is not used during this processing which explains
the similar timing with the one from the compression alone.

VI. CONCLUSION

In summary, we proposed a new efficient point-based
reconstruction framework that allows a better handling of
anisotropic noise of range camera. We introduce a point
attributes compression scheme that allows large-scale recon-
struction reducing the final storage by half with the same



0.00

0.01

Fig. 9. Color-coded error distances of our Buddha scene. The point distance errors to the groundtruth mesh for the isotropic fusion (left) and for the anisotropic
fusion (right), The images are generated using the CloudCompare software [21].

0.00

0.01

Fig. 10. Color-coded error distances of the Buddha scene in a region with high anisotropy. Here only points that have a confidence counter greater than 30
are shown. The anisotropic accumulation (right) better handles this region with strong distance noise compare to the isotropic fusion (left). The images are
generated using the CloudCompare software [21].

0.00

0.01

Fig. 11. Color-coded error distances of the Statue scene in a region with high anisotropy. Here only points that have a confidence counter greater than 30
are shown. The anisotropic accumulation (right) better handles this region with strong distance noise compare to the isotropic fusion (left). The images are
generated using the CloudCompare software [21].



Confidence counter

0

-2

2

4

6

8

12

10

D
is

ta
nc

e 
E

rr
or

 (
m

m
)

0 20 40 60 80 100 120

mean-std

mean+std

mean

isotropy

anisotropy

Fig. 8. Comparison of distance error statistics of the Statue scene for the
isotropic and anisotropic accumulation. The mean and the standard deviation
are plotted. The confidence counter is related to the number of merges for the
model points.

Methods MapComp IdxMap Accum GenModelMaps
(all times min, max min, max min, max min, max
in msec) mean±std mean±std mean±std mean±std

Naive 1.9, 6.1 0.7, 2.6 3.2, 6.7 2.1, 6.7
3.1±0.5 1.6±0.5 5.1±0.3 5.0±1.2

Encoding 1.9, 6.1 0.6, 2.6 3.4, 7.9 1.6, 4.4
3.1±0.5 1.4±0.4 5.2±0.4 3.4±0.5

Encoding + 1.9, 6.7 0.6, 2.6 3.5, 8.0 1.6, 4.4
Anisotropy 3.1±0.6 1.8±0.4 5.6±0.4 3.4±0.5

TABLE II
TIMINGS GIVEN BY THREE METHODS USING THE Buddha SCENE FOR FOUR

PROCESSING MODULES. MAPCOMP (DEPTH MAP PREPROCESSING),
IDXMAP (INDEX MAP GENERATION), ACCUM (DEPTH MAP FUSION),

GENMODELMAPS (RENDERING). RED COLORS REFERS TO THE MODULES
WHERE THE ANISOTROPIC INFORMATION IS USED.

performance. We demonstrate that this encoding does not
disturb neither the camera tracking algorithm nor the quality
of the reconstructed geometry. Furthermore, we demonstrate
that anisotropic fusion improves the overall quality of the
reconstruction.

ACKNOWLEDGMENT

This work was funded by the German Research Foundation
(DFG) as part of the research training group GRK 1564 Imaging
New Modalities, and by the UK Engineering and Physical
Sciences Research Council (grant EP/K023578/1).

REFERENCES

[1] S. Rusinkiewicz, O. Hall-Holt, and M. Levoy, “Real-time 3D model
acquisition,” ACM Transactions on Graphics (Proc. SIGGRAPH), vol. 21,
no. 3, pp. 438–446, 2002.

[2] R. A. Newcombe, A. J. Davison, S. Izadi, P. Kohli, O. Hilliges, J. Shotton,
D. Molyneaux, S. Hodges, D. Kim, and A. Fitzgibbon, “KinectFusion:
Real-time dense surface mapping and tracking,” in Proc. IEEE Int. Symp.
Mixed and Augmented Reality (ISMAR), 2011, pp. 127–136.

[3] H. Roth and M. Vona, “Moving volume KinectFusion,” in British Machine
Vision Conf., 2012, pp. 1–11.

[4] M. Nießner, M. Zollhöfer, S. Izadi, and M. Stamminger, “Real-time
3D reconstruction at scale using voxel hashing,” ACM Transactions on
Graphics (TOG), vol. 32, no. 6, p. 169, 2013.

[5] M. Keller, D. Lefloch, M. Lambers, S. Izadi, T. Weyrich, and A. Kolb,
“Real-time 3D reconstruction in dynamic scenes using point-based fusion,”
in Proc. Int. Conf. 3D Vision (3DV), 2013, pp. 1–8.

[6] P. J. Besl and N. D. McKay, “Method for registration of 3-d shapes,” in
Robotics-DL tentative. International Society for Optics and Photonics,
1992, pp. 586–606.

[7] D. Falie and V. Buzuloiu, “Noise characteristics of 3d time-of-flight
cameras,” in Proc. Int. Symp. Signals, Circuits and Systems (ISSCS),
vol. 1, 2007, pp. 1–4.

[8] F. Lenzen, K. I. Kim, H. Schäfer, R. Nair, S. Meister, F. Becker, C. S.
Garbe, and C. Theobalt, “Denoising strategies for time-of-flight data,” in
Time-of-Flight and Depth Imaging. Sensors, Algorithms, and Applications.
Springer, 2013, pp. 25–45.

[9] V. Ganapathi, C. Plagemann, D. Koller, and S. Thrun, “Real time
motion capture using a single time-of-flight camera,” in Proc. IEEE
Conf. Computer Vision and Pattern Recognition (CVPR), 2010, pp. 755–
762.

[10] L. Maier-Hein, A. M. Franz, T. R. dos Santos, M. Schmidt, M. Fangerau,
H. Meinzer, and J. M. Fitzpatrick, “Convergent iterative closest-point
algorithm to accomodate anisotropic and inhomogenous localization
error,” IEEE Trans. Pattern Analysis and Machine Intelligence (PAMI),
vol. 34, no. 8, pp. 1520–1532, 2012.

[11] M. Mittring, “Finding next gen: Cryengine 2,” in ACM SIGGRAPH 2007
courses, 2007, pp. 97–121.

[12] C. V. Nguyen, S. Izadi, and D. Lovell, “Modeling kinect sensor noise for
improved 3D reconstruction and tracking,” in Proc. Int. Conf. 3D Imaging,
Modeling, Processing, Visualization and Transmission (3DIMPVT), 2012,
pp. 524–530.

[13] C. Kerl, M. Souiai, J. Sturm, and D. Cremers, “Towards illumination-
invariant 3d reconstruction using ToF RGB-D cameras,” in Proc. Int.
Conf. 3D Vision (3DV), 2014, pp. 39–46.

[14] Z. H. Cigolle, S. Donow, D. Evangelakos, M. Mara, M. McGuire, and
Q. Meyer, “A survey of efficient representations for independent unit
vectors,” Journal of Computer Graphics Techniques, vol. 3, no. 2, 2014.

[15] R. F. Salas-Moreno, B. Glocken, P. H. Kelly, and A. J. Davison, “Dense
planar SLAM,” in Proc. IEEE Int. Symp. Mixed and Augmented Reality
(ISMAR), 2014, pp. 157–164.

[16] Q.-Y. Zhou and V. Koltun, “Dense scene reconstruction with points of
interest,” ACM Transactions on Graphics (TOG), vol. 32, no. 4, p. 112,
2013.

[17] E. Praun and H. Hoppe, “Spherical parametrization and remeshing,” in
ACM Transactions on Graphics (TOG), vol. 22, no. 3, 2003, pp. 340–349.

[18] T. Weise, T. Wismer, B. Leibe, and L. Van Gool, “In-hand scanning with
online loop closure,” in Computer Vision Workshops (ICCV Workshops),
2009 IEEE 12th International Conference on, 2009, pp. 1630–1637.

[19] C. Kerl, J. Sturm, and D. Cremers, “Dense visual slam for rgb-d cameras,”
in Intelligent Robots and Systems (IROS), 2013 IEEE/RSJ International
Conference on, 2013, pp. 2100–2106.

[20] M. Keller and A. Kolb, “Real-time simulation of time-of-flight sensors,”
J. Simulation Practice and Theory, vol. 17, pp. 967–978, 2009.

[21] D. Girardeau-Montaut, “CloudCompare OpenSource Project,” 2013.
[Online]. Available: http://www.danielgm.net/cc/


