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Abstract. Multispectral imaging was employed to collect data on the 
degradation of an 18th century parchment by a series of physical and chemical 
treatments. Each sample was photographed before and after treatment by a 
monochrome digital camera with 21 narrow-band filters, with the objective of 
assessing algorithms for recovery of text from the images. A template-matching 
technique was used to detect the circular holes in each sample and a four-point 
projective transform to register the 21 images. Colour accuracy was verified by 
comparison of reconstructed spectra with measurements by spectrophotometer. 

Keywords: multispectral imaging, manuscript, spectral analysis, parchment. 

1 Introduction 

Digital surrogates of documents have become an indispensable tool for scholars and 
archives. They provide an easily accessible, non-degrading resource for research and 
study [1]. Numerous imaging and image processing technologies have been employed 
to examine the characteristics of the originals, such as X-ray imaging, imaging in the 
infrared spectrum, and multi-spectral imaging. These offer additional information 
about the physical characteristics and condition of the document. The results have 
been better images, more possibilities for analysis, and additional information 
recovered from ancient documents [2-4]. 

Large collections of parchment documents exist in public and private libraries, 
archives, and museums in varying degrees of preservation. Parchment has a 
predominantly organic composition, based on protein collagen in association with 
small quantities of elastin, globular proteins, and fats. It is prepared from an animal 
skin that has been wetted, immersed in lime water, dehaired, scraped, then left to dry 
under tension on a wooden frame. The stretching of the soaked pelt has the effect of 
reorganising the collagen fibre network into a laminate structure. The resulting 
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degradation, including mechanical damage, heat, humidity, abrasion and a variety of 
substances with different chemical properties, such as acid, alkaline, bleach, tea and 
human blood. These affected the appearance and condition of the samples in different 
ways, typical of the actual damage suffered by parchment in real archives. 
Preliminary tests proved the viability of the procedures for degrading the samples and 
enabled parameters to be established for each treatment process [8]. 

2 Multispectral Imaging 

A multispectral image is a set of monochrome images acquired through narrow band 
filters for consecutive wavebands. Each image shows the intensity of radiation from 
the scene in the corresponding waveband [9]. Images are acquired at visible 
wavelengths (400–700 nm), and may also include regions of the non-visible 
spectrum: ultraviolet (<400 nm) and infrared (>700 nm). Multispectral image capture 
was originally developed for remote sensing to determine the composition of objects 
in space by measuring their emission spectra. NASA satellites were also designed to 
capture multi-spectral reflective images from Earth, the most famous being Landsat, 
first launched in 1972, with eight spectral bands. The original application was to 
identify geographic resources without the need for high spatial image resolution [10]. 

 
Fig. 2. Transmittance factors of 21 optical bandpass filters in the visible and NIR spectrum 

Multispectral imaging has been successfully applied to fine art paintings [11-12], 
ancient documents [3], and other cultural heritage applications [13-14]. Bearman and 
Spiro investigated the Dead Sea Scrolls, with a liquid crystal tunable filter in front of 
a monochrome CCD camera [15]. They captured digital images from 400 to 1050 nm, 
and noted a great improvement in legibility at 970 nm, compared with 700 nm. 
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Multispectral images can be used to discriminate between reflectance spectra, and 
hence to identify and separate different types of inks in a single document, showing 
whether the document has been edited. The spectral reflectance profiles of known 
materials can be stored in a database and used to classify unknown materials. The 
type of ink used in manuscripts has considerable impact on the imaging approach. 
The earlier carbon black ink consisted of graphite or soot particles suspended in an 
organic binder and applied with a stylus. Such inks do not penetrate the parchment but 
rest on top, with particles adhering to the micro-structure of the surface. Iron gall ink, 
also known as gallo-tannin ink, was introduced around the third century AD, prepared 
with organic material that penetrates more deeply into the substrate and reacts, 
staining it black. Chabries et al noted that parchment reflectance increases at longer 
wavelengths, resulting in greater contrast of text in infrared images [2]. 

Each of our parchment samples was imaged before and after the treatment, using 
two different cameras, in combination with two lighting systems for both reflective 
and transmissive imaging, through a series of bandpass filters. The cameras were: (1) 
Nikon D200 with 105 mm f/2.8 lens, a digital SLR which captures RGB images of 
3900x2600 pixels in the visible spectrum; (2) Kodak Megaplus 1.6i scientific camera 
with Nikkor 50 mm f/2 lens, which captures monochrome images of 1536x1024 
pixels in both the visible and near-infrared spectrum over the range 400–1100 nm. For 
the Nikon camera, a set of 16 bandpass optical interference filters was used, spaced at 
regular intervals across the visible spectrum. For the Kodak camera 5 additional filters 
were used to cover the near-infra-red range. 

Each of the first 16 filters had a bandwidth of approximately 20 nm, at wavelength 
intervals of 20 nm throughout the visible spectrum from 400 to 700 nm inclusive. The 
last 5 filters had a bandwidth of approximately 50 nm, at intervals of 50 nm in the  
 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 3. Copystand with four tungsten-halogen lamps for reflective imaging of samples with the 
Nikon D200 camera. The filter is screw-mounted into the front of the lens. 
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near-infrared spectrum from 750 to 950 nm inclusive. All were circular glass filters in 
52 mm rings for screw-mounting onto the front of the lens of each camera. This 
arrangement guaranteed that no stray light entered the lens. The spectral transmittance 
of each filter was measured with an Ocean Optics HR2000+ spectrometer (Fig. 2). 

The samples were illuminated by four tungsten-halogen lamps on a standard 
photographic document copystand (Fig. 3). This setup with an incident angle of 
approximately 45° allowed the camera to capture light reflected from the parchment 
without specular highlights. Because parchment is prone to curl, a 3 mm glass plate 
with anti-reflective coating was placed over the sample to hold it flat on the 
baseboard. In total 23x21x2 = 966 images were captured by the Kodak camera for 
parchment samples before and after treatment, and a further 23x16x2 = 736 images 
for the Nikon camera. 

Four circular holes of diameter 1 mm were drilled in each sample at approximately 
one third and two thirds of the width and height. These holes are apparent in each 
image and remained as persistent features after the samples were degraded, both as 
reference points for registration of the multispectral image channels and for 
comparison of image sets of the samples before and after treatment. 

3 Calibration 

The discussion in this article focuses on the Kodak Megaplus camera. Although its 
image resolution is relatively low (image size 1536x1024 pixels), its large photosite 
area on the CCD sensor and absence of a colour filter array and an infrared cut-off 
filter gives it good linearity and signal-to-noise performance throughout the whole 
spectral range. The lens was set to f/5.6, and the exposure time varied for each filter 
so that the white level was just below the CCD saturation level over the whole image. 

The spectral power distribution of the tungsten-halogen lamps was measured with 
the Ocean Optics spectrometer over the range 200 to 1100 nm, at intervals of 
approximately 0.5 nm (Fig. 16). The spectrum was continuous between 400 and 1000 
nm, with a broad peak between 580 and 680 nm. For wavelengths shorter than 440 
nm and longer than 920 nm there was insufficient power to achieve reliable results. 

 

 

 

 

 

 

 
Fig. 4. Illumination intensity distribution for raw (left) and smoothed (right) images 

A stack of 10 sheets of white paper was used to determine the non-uniform 
distribution of illumination. The captured image of the white paper was very irregular 
(Fig. 4a), caused by both camera noise and texture of the paper. A box mean filter 
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with a square kernel of 31x31 pixels was applied to smooth the illumination profile 
(Fig. 4b). The black level of the camera (set by thermal noise and ADC voltage offset) 
was determined by capturing a series of images with the lens cap on. The mean over 
70 images with exposure times ranging from 10 to 700 msec was 27.1 on the 10-bit 
scale 0-1023 (Fig. 6a), with a standard deviation of 1.8. There was no significant 
variation with exposure time or position in the image. 

 

 

Fig. 5. (left) Colour image of MiniMacbeth target taken by Nikon D200 (no filter) under flash 
illumination; (right) Monochrome image of target taken with Kodak camera through 580 nm 
filter, showing position of square sampling box for each patch (red outlines) 

The tonal linearity and colour accuracy were analysed with the aid of a 
MiniMacbeth Color Checker target (Fig. 5a). Twenty-one images were taken through 
the successive filters, using the same camera settings as for the parchment samples. 
The value for each patch was computed as the average of an area of 100x100 pixels in 
the image (Fig. 5b), using the correction formula: ܫመ௞ ൌ  ூೖି஻ሺௐೖ/௥ೖሻି஻ (1) 

where for waveband ݇: ܫመ௞ is the corrected and normalised image, ܫ௞ is the original 
image, ௞ܹ is the smoothed white illumination profile image, ܤ is the smoothed 
black image, and ݎ௞ is the reflectance factor of the white paper. 

 

 

 

 

 

 

 

Fig. 6. (left) Histogram of black values for Kodak camera, averaged over 70 exposures;    
(right) Grey-scale tone reproduction curve for all filter wavelengths 
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The reflectance spectrum of the white paper was measured with an X-Rite i1Pro 
spectrophotometer (Fig. 7a) and shows a peak >1 at a wavelength of approximately 
435 nm, caused by the fluorescent whitening agent in the paper. A notable feature was 
that the reflectance of the masking grid between the patches, which looks black in the 
visible spectrum, rose rapidly in the infrared, becoming a light grey at 950 nm. The 
black patch in the bottom right corner, however, was much more stable because it is 
made with a carbon-based pigment and remains low in reflectance at all wavelengths. 

 

 

 

 

 

 

 

Fig. 7. (left) Spectral reflectance factor of white paper used for illumination profile; (right) 
camera sensitivity vs wavelength (blue lines) inferred from white and grey patches on target 

The mean patch values for the grey scale (six patches on the bottom row of the 
target) were plotted against the measured relative luminance values (Fig. 7b). The 
tonal linearity was excellent for the visible wavelengths, but departed significantly at 
the dark end for infrared wavelengths because of lens flare and loss of image contrast. 

 

 

 

 

 

 

 

 

 

 

 
 
 

Fig. 8. Reflectance factor vs wavelength for camera signals (black lines with circles) and     
spectrophotometer measurements (red lines) for four rows of the MiniMacbeth target 

Row 1 Row 2 

Row 3 
Row 4 
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The spectral sensitivity of the camera was inferred from the grey scale for each 
wavelength by comparing the camera response with the measured reflectance. The 
reflectance at the centre wavelengths of the five IR filters beyond 730 nm was 
extrapolated from measurements with the i1Pro spectrophotometer. The ratios for the 
white and light grey patches yielded very similar results (blue lines in Fig. 7b). 

To check the accuracy of reconstruction of reflectance spectra from the 
multispectral image sets, the MiniMacbeth target was also measured with the i1Pro at 
10nm intervals from 380 to 730 nm. The results were in good correspondence with 
the corrected camera responses for all four rows of the MiniMacbeth target (Fig. 8). 
The camera values at 400 nm were not reliable because the very low power of the 
lamp in this waveband required long integration times for image capture, with 
consequent low signal-to-noise ratio. The CIE L*a*b* values were calculated for each 
reflectance spectrum, using the CIE 2° standard observer and illuminant D65, and the 
mean colour difference over the 24 patches was ΔE*ab = 3.4. The maximum error was 
6.5 for the fourth patch in the second row (purple). 

4 Image Registration 

Because of differences in refractive index of the camera lens for different wavelengths 
of light, the geometry of the successive images in the multispectral sequence varied 
from one image to the next, so that no two were in perfect register. The treatment may 
have radically altered the parchment, moreover, causing substantial distortion to its 
geometric structure. To make a composite image of all the wavebands, therefore, it 
was necessary to find a way to put them all into accurate register. 

 

Fig. 9. Images through 600 nm filter of the parchment sample half-covered by blood, before 
and after the treatment. The yellow lines indicate the positions of the registration holes. 
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Fig. 11. Correlation scores for the lower left hole before and after treatment (Fig. 10), 
visualised as surfaces on a pixel grid, showing the peak score at the hole centre, and secondary 
peaks caused by the ink strokes. Scores < 0 are represented by black dots, and scores > 0 by 
blue dots.The red cross shows the row and column indices of the peak score. 

 

 

 

 

 

 

 

 

 

Fig. 12. (left) Maximum correlation score for each hole as a function of template diameter in 
pixels; (right) centroid (cyan cross) of template position (blue) over image of neighbourhood of 
lower left hole (same as Fig. 10a). The red square is the range of the correlation region. 

The mapping of each image to the reference image is performed by projective 
mapping, using the Matlab functions maketform and imtransform. In this 
projective transformation, quadrilaterals map to quadrilaterals and straight lines 
remain straight. It is implemented as: ሾݑԢ Ԣݒ Ԣሿݓ ൌ ሾݔ ݕ  ଵ (3)ି܂ ሿݖ

where u = u’/w’ and v = v’/w’ and  ି܂ଵ ൌ ൥A D GB E HC F I ൩ , ൌ A௫ାB௬ାCG௫ାH௬ାI , ݒ ൌ D௫ାE௬ାFG௫ାH௬ାI 
At least four control-point pairs are needed to solve for the nine unknown 

coefficients of T-1 and these are provided by the (x,y) centroid coordinates of the four 
anchor points. 
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The accuracy of the registration procedure is shown in the false-colour image 
composite (Fig. 13). The transformed image (red channel) is closely in register with the 
reference image (blue channel), so that they appear everywhere as a unified magenta. 

 
 

 

 

 

 

 

 

 

Fig. 13. (left) False-colour composite of reference 600 nm channel of sample before treatment 
(blue), 850 nm channel of sample after treatment (green), and the latter after registration (red); 
(right) enlarged detail of region around upper left hole 

5 Image Analysis 

When all of the image channels for the sample before and after treatment have been 
accurately registered, it is possible to compare the effect of the treatment on the 
reflectance spectrum at any pixel position. Fig. 14 shows the effect of the treatment 
by blood on the parchment and the iron gall ink in locations close to the bottom left 
hole (Figs. 9 and 10). The spectra are plotted for all nine pixels in a 3x3 region around 
the selected coordinates, together with the mean in green (before) and red (after). The 
blood clearly affected the colour of the parchment, reducing its reflectance from about 
0.5 to less than 0.1 in the short wavelengths, rising to about 0.4 at long and NIR 
wavelengths, giving a dark red colour. The ink spectrum was apparently not much 
changed (Fig. 14 right), except at wavelengths greater than 850 nm, but comparison 
with the figure at the left shows that the result is not much different from the blooded 
parchment spectrum, because most of the ink has been dissolved. 

 
 
 
 
 
 
 
 
 

 

Fig. 14. Reflectance spectra before and after treatment for (left) parchment and (right) ink 
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(4) 

Because the reflectance spectrum can be estimated from the multispectral image 
set, the appearance of the parchment under any illumination source of known spectral 
power distribution can be predicted. Colour renditions of the sample after treatment 
were reconstructed from the registered image channels, using the wavelengths 400-
700 in the visible spectrum, interpolated to 5 nm intervals, with the CIE 2° Standard 
Observer and four common illuminants: cool daylight (D65), incandescent (A), tri-
band fluorescent (F11), and light-emitting diode (LED): 

ܺ ൌ  ݇ ෍  ܵሺߣሻ. ܴሺߣሻ. ሻ଻଴଴ߣҧሺݔ
ସ଴଴ .  ߣ∆

where: ܺ is a scalar stimulus value, ܵሺߣሻ = power of source at each wavelength ߣ, ܴሺߣሻ = surface reflectance, ݔҧሺߣሻ = standard observer tristimulus function, ∆ߣ is the 
wavelength interval (5 nm), and ݇ is a normalising factor. Similar equations apply for ܻ 
and ܼ, corresponding to ݕതሺߣሻ and ݖҧሺߣሻ. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 15. Colour image reconstruction of sample after treatment under daylight (D65), 
incandescent, fluorescent and LED sources, with respective spectral power distributions (inset) 

D65 

A 

F11 LED 
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The results, converted from XYZ tristimulus values to sRGB (assuming a D65 
display white point), are shown in Fig. 15. The daylight gives a cool bluish 
appearance, with the parchment almost grey, whereas the incandescent light gives a 
very warm appearance, with the parchment orange and the blood a rich tomato red. 
Both the fluorescent and LED sources, which have lower colour rendering indices, 
exhibit a pink cast, but make the blood look more brown than red. 

6 Discussion 

Multispectral imaging enables the reflectance spectrum of the surface to be estimated 
at every pixel position in the image. This makes it a much richer representation than 
the usual trichromatic RGB image, and thereby enables a deeper level of analysis. For 
this project in particular, it enables the effect of the treatment to be characterised in 
terms of its effect on the reflectance spectrum of the materials. 

 

Fig. 16. (left) Spectral power distribution of the tungsten-halogen lamp on copystand; (right) 
Transmittance factor of anti-reflective glass sheet placed over samples 

The tungsten-halogen lamps used on the copystand for illuminating the parchment 
samples produced a continuous spectral power distribution (Fig. 16a), but suffered 
from low power at short wavelengths, especially at 400 nm. Each sample was covered 
by a sheet of 3 mm glass with an anti-reflective coating, in order to hold it flat on the 
baseboard of the copystand during photography. This was particularly important for 
the samples after treatment, as they were inclined to curl. The transmittance factor of 
this glass was measured (Fig. 16b) and throughout the visible spectrum was greater 
than 0.97, although it dropped to 0.88 in the IR. The method of using a white 
reference for each filter wavelength was effective because it compensated not only for 
spatial variations in the illumination and lens vignetting, but also for variations in the 
power of the light source, transmittance of the filter glass and sensitivity of camera. 

The method for registering the images in this study makes use of four circular 
holes drilled in each parchment sample. This proved to be effective in registering all 
image sets both before and after treatment to a common geometric grid, but was 
limited in two ways: (a) the accuracy of locating the hole centroids depends on their 
shape, the image contrast, and whether there are any adjacent ink strokes. Iterative 
techniques with radiometric adaptation would give greater precision in the centroid 
coordinates [16]; (b) the projective transform with coefficients derived from the four 
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hole centroids can correct for translation, scaling, rotation and perspective changes, 
but cannot correct for non-linear distortion of the parchment which results from some 
treatments such as heat and humidity. In general it produced better results for the 
central square image area bounded by the four holes, and worse results outside this 
area where the transform was extrapolating. Better results would be obtained by the 
detection of additional image features, including ink and other markings, over the 
whole area, then employing a ‘rubber sheet’ mapping technique [17]. 

A better solution would be to 
determine a consistent feature set 
over the entire parchment area 
and to use this for registration of 
the image set. Whilst such a 
feature set is highly dependent 
on the image texture, a spatially 
dense feature set would support 
the use of local coordinate 
transformations, avoiding 
extrapolation at image edges and 
ensuring that localised text is 
correctly registered throughout. 
The method would have the 
added benefit of correcting for 
radial geometric shifts in the 
imagery due to differing 
refraction of the recording optics 
with wavelength. The example in 
Figure 17, which has been processed using image dilation and erosion followed by a 
Canny edge detector, shows how key corresponding points for subsequent correlation 
might be seeded from the text features. The clarity of the extraction also demonstrates the 
merit of matching between image channels using edge registration methods. 

A typical problem where a degraded parchment is subjected to analysis is that its 
original state (both text and material) is not known, and so assumptions must be made 
in guiding the digital restoration. Our dataset of the parchment samples before 
treatment provides a ‘ground truth’ for analysis of the effectiveness of image 
processing algorithms in restoring images of the degraded samples. Our dataset of the 
samples after treatment shows exactly the effect of the physical changes on the 
reflectance. Analysis of multispectral images of scraped or mechanically damaged 
samples enables us to identify even faint traces of ink. It also enables the 
discrimination of inks similar in appearance, and the recovery of writing from darkly 
stained parchment and from charred and burned fragments. 

As a result of this project we have sets of multispectral images showing both the 
initial and degraded state of a manuscript for each of a series of treatments typical of 
the degradation of real parchments encountered in practice. These image sets will be 
fully documented and released publicly as a resource for the research community. We 
offer these as a guide for conservation, a resource for quantitative evaluation of image 
processing algorithms for information recovery, and a stimulus for other research 
activities in conservation, image processing, computer graphics, and archaeometry. 

Fig. 17. Edge extraction of text provides a rich feature
set for subsequent registration of images 
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