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Figure 1: Left: our measurement setup consists of a screen and a camera. Middle: a photograph of a material sample, taken under a novel
viewpoint and illumination not used in the capture. Right: our rendering with matching lighting and viewing conditions.

Abstract

Spatially-varying reflectance and small geometric variations play a
vital role in the appearance of real-world surfaces. Consequently, ro-
bust, automatic capture of such models is highly desirable; however,
current systems require either specialized hardware, long capture
times, user intervention, or rely heavily on heuristics. We describe
an acquisition setup that utilizes only portable commodity hardware
(an LCD display, an SLR camera) and contains no moving parts. In
particular, a laptop screen can be used for illumination. Our setup,
aided by a carefully constructed image formation model, automati-
cally produces realistic spatially-varying reflectance parameters over
a wide range of materials from diffuse to almost mirror-like specular
surfaces, while requiring relatively few photographs. We believe
our system is the first to offer such generality, while requiring only
standard office equipment and no user intervention or parameter
tuning. Our results exhibit a good qualitative match to photographs
taken under novel viewing and lighting conditions for a range of
materials.
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1 Introduction

Most natural materials exhibit spatially-varying surface reflectance
properties. Even if perhaps mostly flat and homogeneous over large
scales, they still exhibit scratches, scuffing and other local material

variations that greatly contribute to their look. Accordingly, most
digital assets in games and films are nowadays assigned normal
maps and spatially-varying reflectance parameters. Nevertheless,
the acquisition of spatially varying BRDF (SVBRDF) parameters
from real surfaces remains cumbersome.

The SVBRDF is a six-dimensional function of space and angles,
which complicates its acquisition. Exhaustive sampling of the six-
dimensional space leads to prohibitive acquisition times [Dana
and Wang 2004; Holroyd et al. 2010], or, if the samples are too
sparsely distributed, incurs aliasing, for instance of narrow specular
reflectance lobes. More recent work devised devices for smart cap-
ture of representative samples [Lensch et al. 2003; Dong et al. 2010;
Ren et al. 2011], or aggressively reduced the amount of input data,
making strong assumptions on the spatial material distribution and
relying on user interaction to touch up the data [Clark 2010; Dong
et al. 2011] which generally sacrifices accuracy.

A recent trend recognizes the need for practical high-resolution
SVBRDF capture in an informal setting, devising simple hardware
to capture representative reflectance properties in subspaces of the
SVBRDF and inferring the full function through data amplifica-
tion [Dong et al. 2010; Ren et al. 2011]. Our work takes this further,
offering independent per-point BRDF reconstructions with hardware
already at most artists’ desks. To this end we follow two key design
decisions toward a practical SVBRDF acquisition system.

First, we confine observations to a smaller range of the angular do-
main, using a single viewpoint and illuminating the sample using a
planar light source significantly smaller than a full spherical light-
ing environment. To still capture the most prominent features of
the reflectance lobes, we concentrate this sampling on the mirror
direction as seen from the fixed viewpoint. In practice, this restricts
applicability to near-planar surfaces, but we argue that this case is
common enough to cover a majority of real-world scenarios.

Second, we use fully automated commodity hardware only, allowing
for capture and processing with no intermittent user intervention.

Our concrete setup consists of a single LCD screen and one camera,
facing a near-planar material sample from opposite sides, see Fig-
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ure 1, left. The static camera takes images of the sample illuminated
by intensity patterns displayed on the screen.

In principle, this setup could emulate a set of spatially distributed
point-light sources, to measure individual directions of incidence.
To keep the number of input photographs manageable, however, the
number of discrete point lights would have to be limited, incurring
aliasing for specular highlights. Instead, we accomplish aliasing-free
reconstruction of very narrow, even mirror-like reflectance lobes by
illuminating with continuous, band-limited illumination patterns.

Having restricted the range of angular reflectance samples, extrapo-
lating the reconstruction to the full range of views and illumination
requires fitting a reflectance model to the data. Any such (non-linear)
fit requires repeated model evaluation to compare the current pre-
diction to measurements, which for our continuous illumination
requires integrating the product of the BRDF with the illumination
pattern. For traditional reflectance models, however, this would
generally imply expensive numerical integration in every iteration
of the optimizer. We solve this problem by jointly designing re-
flectance model and illumination patterns, so that the respective
integrals can be computed analytically, making an iterative model fit
computationally feasible.

In this image formation model, we approximate reflectance lobes
as Mixtures of Gaussians (MoG) in the illuminating screen’s do-
main and use Fourier basis patterns, windowed by a Gaussian, for
illumination. As we will show, typical reflectance functions are
well-behaved in our chosen basis: they require only few basis func-
tions for reconstruction and separate well into diffuse and specular
components in that domain.

In summary, we believe our system is the first to automatically
capture normal maps and a wide range of reflectance properties,
from diffuse to almost perfectly specular, using a static system
built from low-cost commodity parts, and requiring no user inter-
vention or parameter tuning. Our key technical contribution is the
jointly-designed combination of continuous illumination patterns
and a carefully crafted image formation model that can predict the
values of observations analytically, and captures the essential fea-
tures of reflectance using relatively few measurements. We evaluate
our approach using ground-truth comparisons for material samples
exhibiting a wide range of reflectance properties.

2 Related Work

Previous work in appearance capture has acquired image-based
representations, as well as explicit surface reflectance representations
that range from pure albedo reconstruction to BRDF acquisition and
even reconstruction of local subsurface scattering properties at every
surface point of an object [Weyrich et al. 2008]. In this section, we
will focus on per-point surface reflectance reconstruction; image-
based object representations and subsurface scattering are considered
outside our scope.

2.1 (SV-)BRDF Acquisition

Normal and Reflectance Capture Jointly estimating reflectance
functions and normals from reflectance observations has a long
tradition, starting with photometric stereo [Woodham 1978; Ikeuchi
1981], moving on to more general BRDF models [Coleman and
Jain 1982; Nayar et al. 1990; Weyrich et al. 2006; Holroyd et al.
2008; Ghosh et al. 2009], partially deriving normal orientations by
exploiting internal symmetries in physical BRDFs [Zickler et al.
2002; Holroyd et al. 2008]. In our approach, we obtain normal
information as part of the model fit.

Model Assumptions Acquisition of SVBRDFs usually aims at
increasing efficiency by making simplifying world assumptions,
for instance by assuming isotropic reflectance and by modeling
appearance as a spatially varying linear combination of few basis
BRDFs [Lensch et al. 2003; Goldman et al. 2005; Lawrence et al.
2006; Dong et al. 2010; Ren et al. 2011]. We, too, assume isotropic
reflectance and use a few-parameter BRDF model, but we aim at
deriving independent, per-point reflectance fits.

Strong Priors Some approaches aggressively minimize the set of
measurements required, while softening the requirement of faithful
reconstructions. CrazyBump [Clark 2010] obtains shape and albedo
from single photographs and allows manual editing of appearance.
Their system uses a proprietary set of heuristics and heavily relies on
user input. By adding a flash-exposed image, Glencross et al. [2008]
allow for a more principled heuristic, deriving perceptually plausible
elevation maps from single viewpoints. Dong et al. [2011] present
the system AppGen, which decomposes a single image into shading
and diffuse albedo components by a user-guided intrinsic-image
approach. The normals are computed using shape from shading,
and the specular BRDFs are assigned by the user. In all of these
cases, the results often look surprisingly convincing but do not bear
a strong quantitative relation to reality.

Linear Light Sources Gardner et al. [2003] and Ren et al. [2011]
use setups with a moving linear light source and capture the inten-
sity profiles of the reflections as a function of time. Very roughly
speaking, our data can be seen as Fourier transforms of such profiles.
Our arrangement requires no mechanical movement. Our choice
of sampling directly in the Fourier instead of primal basis allows
sampling with less images.

Basis Illumination One problem that traditionally drives up the
number of light sources to sample illumination directions is aliasing:
in order to be able to capture very narrow reflectance lobes, a dense
angular sampling is required. Sato et al. [2003] hence propose
the use of continuous, low-pass filtered illumination. A system
that builds upon this principle is the work by Ghosh et al. [2007],
who built a catadioptric system to illuminate a surface point with
continuous, zonal basis functions over a hemisphere. Our work is
strongly inspired by their approach; in comparison, while Ghosh et al.
image a single surface point from various directions simultaneously,
we trade the angular for the spatial domain, thus acquiring fully
spatially-varying appearance from a single viewpoint only. Ghosh et
al. [2007] further note that expressing reflectance directly using the
basis used for acquisition leads to ringing in the presence of sharp
specularities. Similar to them, we address this by fitting a parametric
BRDF model to the measurements. Our model then extrapolates the
data to allow for novel viewpoints.

Equally related to our work are the monitor-based capture setups
presented in more recent papers by Ghosh et al. [2009; 2010]. They
both display polarized, low-order spherical harmonic patterns on a
monitor, observing a surface with a polarized camera under mirror
configuration. They exploit polarization-dependence of light re-
flectance to extract specular parameters and (in [Ghosh et al. 2009])
normals from small sets of images. In contrast to our work, however,
their methods require the reflectance lobe to be fully contained in the
monitor; as soon as a lobe overlaps with the monitor boundary (as for
instance the case with diffuse or glossy reflectance), the reconstruc-
tion breaks down. A key property of our method is that it models
this case directly and thus enables reconstruction of wide-lobed
reflectances as well. Also, their method requires (mechanically)
changing polarization throughout the measurements, increasing the
risk of image misalignment due to mechanical movement, which is
an error source avoided by our solid-state design.
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2.2 Similar Hardware Setups

Wang et al. [2011] present a setup similar to ours that recovers
statistical surface normal and reflectance from a very low number
of photos under step-edge illumination. Like ours, their model uses
Gaussians to approximate the reflectance, but the range of materials
that conform to their model assumptions is very limited and, most
critically, they do not reconstruct spatially-varying reflectance.

Screens have also been used to illuminate objects in other areas
of appearance capture. Environment matting aims at tabulating
light transport from a background scene through a (typically half-
transparent or refractive) foreground object [Chuang et al. 2000;
Zhu and Yang 2004]. The focus of such work, however, is more in
finding memory-efficient encodings of the transfer function and on
finding minimal pattern sequences that allow identifying the origin
of a ray path.

Also, there are methods that used screen illumination to reconstruct
surface normals only. Francken et al. [2008] use a setup very similar
to ours, imaging Gray codes displayed by a monitor reflected in a
surface sample. They need many images to reduce aliasing and only
reconstruct normals, not BRDFs. Similar to our work, their recon-
struction assumes near-planar overall geometry. Other approaches
lift this restriction by placing the Gray-code displaying screen at
two subsequent planar positions [Bonfort et al. 2006], or by using a
second camera [Nehab et al. 2008], thus allowing for triangulation
of general 3-D points in space. Chen et al. [2006] use a static camera
and moving light source to observe highlights and derive normal
directions from these observations. They need very many images
and still suffer from aliasing.

3 Overview

Our capture setup observes the reflections of the patterns emitted
by the screen on the material sample. By reversing the direction of
light transport, the observations can be seen as viewing rays leaving
the camera and reflecting into the screen in the form of a reflectance
lobe (see Figure 1, left): each pixel measures the integral of the
product of this projected lobe and the illumination pattern.

In the following sections, we describe how we model this light trans-
port in our measurement setup: by choosing (windowed) Fourier
basis patterns (Section 4) and by modeling reflectance as a Mixture
of Gaussians (Section 5), we obtain a complete image formation
model that still allows for analytic integration, see Section 6. Our
derivation involves careful approximations, using a planar domain
for our basis patterns and to reparameterize reflectance lobes. This
parameterization further allows us to locally approximate perspective
relations within the setup by affine projections into that plane. This
consideration of the geometric terms introduced by the local lighting
lifts restrictions on the measurement setup commonly present in
previous work that assumes distant lighting.

Section 4.4 will take a closer look at the properties of our mea-
surements: through the use of a Fourier basis, our observations
are essentially spectral samples of the reflectance convolved by the
Fourier-transformed windowing function, and we will show that
reflectance lobes behave and separate well within that domain.

Our model’s analytical integrability allows for efficient SVBRDF
reconstruction through Bayesian inference (Section 7). The use
of such a flexible optimization framework enables us to introduce
carefully chosen priors that improve stability of the reconstruction
(Section 7). Results are presented in Section 8. See Table 1 for the
list of symbols.

A(x) affine part of diffuse term NE (x) monitor emittance Gaussian
ad diffuse albedo RGB vector N S,l (x) specular Gaussians
as specular albedo RGB vector NW (x) window Gaussian
d(p) orthogonal distance from screen ω 2D frequency
D(x;p) distance between points p point on sample surface (world)
E camera position (world) ρ full BRDF (screen)
Es(X→ p) monitor emittance distribution ρd ,ρs diffuse and specular BRDF (screen)
f(x) the function that is measured σ specular glossiness
γ specular kurtosis T matrix of screen to world transform
g j(x) jth pattern emitted from screen t screen origin (world)
i pixel index w(x) window function
j frequency index X point on screen (world)
n surface normal x point on screen (local)
ND,k(x) diffuse Gaussians Z captured data

Table 1: List of symbols.

4 Reflectance Measurements

This section describes our light transport model, the geometric con-
figuration of our setup, and how we account for the radiometric
properties of the screen used for illumination. In addition, we moti-
vate our choice of spectral emission patterns.

4.1 Light Transport Model

We capture J photos, each with a different pattern displayed on the
screen. The image data Zi, j recorded by the camera is the exitant
radiance from the point pi seen in the ith pixel towards the camera
under the jth illumination condition. Let the camera be located in
position E in world coordinates, and parameterize the screen plane
by x in its local 2D coordinate system, with corresponding world
coordinates X(x) (cf. Figure 1, left). Since we assume the screen to
be the sole, unoccluded light source, the values of the observations
can be modeled by the reflectance equation written as an integral
over the screen:

L j(p→ E) =
∫
R2

ρ(x;p)L j
e(X(x)→ p)dx . (1)

Here ρ(x;p) is the apparent reflectance function of point p evaluated
in the direction of the point X. It captures the joint effects of the
compound (diffuse+specular) reflectance lobe, cosine term, solid
angle-to-area variable change, the position of p with respect to
the screen, and any possible local interreflection and shadowing
effects. L j

e is the emitted radiance from the jth emission pattern.
Our concrete goal is to formulate an analytic model that describes
the observed pictures in terms of the known geometric setup and
intuitive parameters, i.e., albedos, normals, etc., and for each pi, find
the set of parameters that minimize deviation from the observations.

Coordinate Systems Because the screen is close to the sample,
we must explicitly account for local illumination effects, i.e., the
variable relative positioning of the sample and screen. The world
and screen coordinates systems are related by

X(x) = Tx+ t , (2)

where T ∈ R3×2 is an orthogonal matrix and t is the origin of the
screen in world coordinates. These are determined by a simple
calibration procedure (Appendix A). To enable the use of analytic
Fourier transforms defined over the entire plane, we treat the screen
plane as having an infinite extent and restrict to the physical screen
by multiplication by a window function. We parameterize the plane
such that the physical screen rectangle is x ∈ [−π,π]× [−π/a,π/a],
where a is the aspect ratio (e.g., a = 16/9).

4.2 Monitor Properties

Emission Distribution Function To account for the non-uniform
emission distribution of typical screens, we expand the emission
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Figure 2: A material sample, with four separate points marked. Top row: a slice through the horizontal frequency axis. Bottom row:
primal-domain reflectance lobes, parameterized over the screen. P1: moderate gloss. P2: diffuse. P3: dull gloss. P4: highly specular. Note the
different vertical axis scales in the primal domain plots.

pattern as

L j
e(X→ p) = g j(x)Es(X(x)→ p) . (3)

Here g j(x) is a 2D pattern to be displayed on the screen, and Es is
the emission distribution function.

We found that the emission distribution of a high-quality panel can
be sufficiently well modeled as follows. We only consider the angu-
lar distribution of emittance, independent of the screen position. A
convenient parameterization is given by letting the viewer be located
at unit distance perpendicularly away from the screen origin t, with
the screen emitting full-intensity white. The radiance observed by
the viewer from each screen position is a function of x. We approxi-
mate this function as a Gaussian N Ẽ(x) with a diagonal covariance
and a mean that is zero on the horizontal axis, corresponding to
typically observed emittance from LCD monitors. The emission
distribution function Es towards a general position p is a Gaussian
N E(x;p) obtained by suitable scaling and translation of N Ẽ . Ap-
pendix A describes a simple calibration method for obtaining the
parameters.

Unknown Response Curve We eliminate gamma and other non-
linearities in the monitor emission as follows. Let h(x) be the gray-
scale pattern to be displayed. We use an exposure time of three
seconds, and display the time-varying, thresholded, pure black and
white pattern h̃(x;s) = H(h(x)− s), where s is the elapsed exposure
time scaled to [0,1], and H is the step function. The effect is the
same as if we had shown the original pattern using linear gray values.

4.3 Illumination Patterns

Our emission patterns are

g j(x) = w(x)e−
√
−1ω j>x , (4)

where w(x) is a smooth window function. With this choice, the
measurements Zi, j give, for each point p on the sample, the 2D
Fourier transform of the product

f(x;p) := ρ(x;p)Es(X(x)→ p)w(x) (5)

with respect to the primal variable x, evaluated at the 2D frequency
ω j. Since the functions being transformed are real-valued and
consequently their Fourier transforms are conjugate symmetric, each
measurement determines the value of the Fourier transform at two
points in the frequency plane.

Window Function We modulate the complex exponentials by a
smooth window function that falls off towards the the edges of
the screen. If we did not window the illumination, we would be
implicitly using a sharp rectangle window (w(x) = 1 on the screen
and w(x) = 0 outside its extents). Its effect in the Fourier domain
is a convolution of the rest of the terms by a sinc, which we could
not handle analytically. We use a Gaussian window, so that the
corresponding convolution can be easily computed in closed form
because we approximate the rest of the terms by simple functions
(Gaussian, affine). Specifically, our window w(x) is a zero-mean
Gaussian NW (x) with covariance ΣW = diag(1,(1/a)2).

Complex Values As the patterns contain both negative and imagi-
nary values, they cannot be directly realized on a monitor. Thanks to
linearity, we obtain a corresponding measurement by appropriately
summing the four photos g j,k(x) = w(x)max(0,sin(ω j>x+ kπ/2))
for k = {0,1,2,3}. The subtraction of opposite-phase images also
cancels any common ambient illumination.

4.4 Properties of Fourier Measurements

Our measurements are point samples of the spectrum of f(x;p)
(Equation 5). Clearly, if f was an arbitrary function with an arbitrary
spectrum, a few samples of the spectrum would not enable us to de-
duce much about the reflectance. Our crucial observation is that the
spectra of typical reflectance functions are simple, smooth functions,
and that glossiness, albedos, and relative strengths of diffuse and
specular components map to directly observable properties of the
spectra. For instance, decay rate directly corresponds to glossiness,
as is well known [Ramamoorthi and Hanrahan 2001]. The simple
shapes enable our analytic model, which is carefully crafted to have
an analytic Fourier transform, to be fit directly in the spectral do-
main, and to capture the shapes of the reflectance lobes using only a
limited number of measurements.

To illustrate, let us examine the data visually. Figure 2 shows a photo-
graph of a material sample, and four points P1, . . . ,P4 with different
reflectance properties highlighted. The plots show the magnitudes
of Fourier coefficients of f(x;P1), . . . , f(x,P4) on a slice through the
horizontal frequency axis, i.e., with g(x) = w(x) exp{−

√
−1Ωx x}

with varying Ωx, on a log-log scale. The far right end of the range
corresponds to 60 wavelengths over the screen. The measurements
are shown as black dots. The solid lines denote our model fit after
optimization, and they illustrate that the shapes are simple enough
to be successfully captured from the relatively few, low-frequency
samples only. Dashed lines illustrate the diffuse and specular com-
ponents of the model. Gray dots denote points that were captured
for verification purposes, and not used in the model fit.
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Figure 3: A slice through the reflectance function over the screen
plane (primal domain) for a single surface point. Blue curve: inverse
Fourier transform of the data. Red curve: our model fit.

The plots illustrate how different reflectance properties are evident
in the spectrum. Point P1 is glossy, but contains a noticeable dif-
fuse component. We observe that the spectrum inflects at around
frequency 6, where the diffuse power trails off, leaving the glossy
component to decay around our maximum captured frequency. Point
P2 is mostly diffuse. We observe that its spectrum is essentially con-
tained in the frequencies 0–5, with the rest of the observations well
below the noise floor. Point P3 has a diffuse and dull glossy com-
ponent. The overall shape of the spectrum resembles that of the
diffuse point — the spectrum of P3 has decayed to the noise floor by
frequency 13, in comparison to frequency 6 for the diffuse point P2.
The closely related shapes of diffuse and dull glossy lobes would
make heuristic diffuse-specular separation difficult, but our model
and optimizer, explained in the following sections, correctly identify
them. Point P4 is highly specular, which shows up in the spectrum
of its narrow lobe: the magnitude hasn’t noticeably decayed by the
highest frequency we capture, indicating there is significant energy
left in the unmeasured part of the spectrum. The shape, however,
remains simple and smooth.

The fact that we only take a few point samples of the continuous,
infinite spectrum also indicates that the measurements are, in them-
selves, not a good representation for reflectance functions even for
the single outgoing slice for which the measurements were taken:
we cannot interpret the data as a complete Fourier transform of f.
Figure 3 shows the reflectance function of a point with both diffuse
and relatively sharp specular contributions. The blue curve is ob-
tained by interpreting the spectral samples as basis coefficients and
evaluating the corresponding truncated Fourier sum. This results in
severe ringing due to the energy in the frequencies not captured by
the measurements. Furthermore, the coefficients themselves do not
directly determine the normals, glossiness, and so on. In contrast, a
model fit to the same data yields much more meaningful parameters.
This is consistent with the findings reported by Ghosh et al. [2007].

Position and Phase The position where the reflectance lobe of
a surface point p intersects the screen is mostly determined by the
unknown local surface normal and the known relative position of
the point and the screen. The position is consequently a strong
clue that can be used to infer normals. Fourier measurements have
the desirable property that translation and shape are separated into
magnitude and phase. As shown above, the shape of a narrow lobe
is captured well in the magnitude plot. In addition, however, also
its location can be resolved very well from the phase information,
which enables us to resolve both position and shape accurately.

Dynamic Range Our lighting patterns are effectively area sources
with different spatial textures. It is not hard to see that the dynamic
range of a scene under area lighting is reduced compared to point
sources: as reflectance is qualitatively a convolution of lighting and
BRDF [Ramamoorthi and Hanrahan 2001], the energy of narrow
reflectance lobes is spread out by low-frequency illumination. This

enables us to take single exposures rather than use bracketing.

5 Reflectance Model

This section describes our analytic model for the apparent reflectance
function ρ from Equation 1. We develop a model in the primal do-
main, because the necessary geometric considerations are simple,
but carefully construct the model so that it is easy to Fourier trans-
form analytically, as required by the subsequent optimization. We
start by expanding the apparent reflectance function into diffuse and
specular components as

ρ(x;p) = ad(p)ρd(x;p,n)+as(p)ρs(x;p,E,σ ,γ,n) , (6)

where ad , as are the diffuse and specular albedos, and ρd , ρs are
diffuse and specular reflectance lobes that depend on the relative
positions of the camera, the surface point, the screen point, local sur-
face normal n, specular roughness σ and kurtosis γ , which intuitively
controls the pointiness of the specular lobe.

5.1 Diffuse BRDF

The diffuse BRDF is assumed to be Lambertian. Absorbing the
incident normal cosine and the Jacobian of the reparameterization
of the incoming solid angle onto the emitter screen area yields

ρd(x;p,n) =
d(p)

πD(x;p)4 [n
>Tx+n>(t−p)] , (7)

where d(p) is the orthogonal distance from p to the screen, and
D(x;p) is the distance from p to X(x). The bell-shaped function
1/D(x;p)4 originates from the inverse square distance and the nor-
malization of the point-to-screen vectors in the two cosines. We
approximate it with a mixture of three Gaussians ND,k(x;p) as
described in Appendix B, yielding

ρ
′
d(x;p,n) =

d(p)
π

[
n>Tx+n>(t−p)

]
︸ ︷︷ ︸

:=A(x;p,n)

3

∑
k=1

ND,k(x;p) . (8)

The leading affine function A(x;p,n) encodes the effect of the local
surface normal. The Gaussians do not depend on any of the unknown
parameters, only the geometric configuration.

5.2 Specular BRDF

Our specular model is an approximation to a microfacet BRDF that
is symmetric around the halfway vector. It is constructed such that
the projection of the lobe onto the screen is a sum of Gaussians. This
is vital for our ability to analytically compute its integral with the
illumination patterns. Our model captures the stretching and scaling
effects related to the screen projection, as well as the incidence angle-
dependent narrowing caused by the half-angle parameterization. At
moderate to high gloss, it closely approximates microfacet models
such as the Blinn model [Blinn 1977].

One specular lobe Two specular lobes

Figure 4: A single specular lobe (left) cannot capture heavy-tailed
reflectance lobes of e.g. layered materials. A two-lobe model (right)
matches observed behavior much better. All results use two lobes.
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Figure 5: The primal domain reflectance components visualized in screen coordinates. The albedos ad ,as have been omitted for clarity.

We use two lobes because materials often exhibit layers and other
effects that result in pointiness and heavy tails of the specular lobe,
which a single, simple lobe is unable to capture [Ngan et al. 2005].
This is evident in our data, where the magnitude spectra of the specu-
lar lobes rarely show the log-quadratic decay that simple parametric
models predict. (Pointier lobes with heavier tails exhibit more log-
linear behavior.) The importance of modeling this behavior has
been recognized in recent work (e.g. [Löw et al. 2012]) on BRDF
models aimed at data fitting. We introduce a kurtosis parameter
γ that controls the pointiness of the lobe by adjusting the relative
widths of the two lobes while keeping its overall glossiness fixed.
Specifically, our specular lobe model is a mixture of two Gaussians
ρs = ∑l N S,l(x;p,E,σ ,γ,n) on the screen plane. The means and
standard deviations of the Gaussians are derived from σ , γ , n and
the geometric configuration as detailed in Appendix C. Our lobes
approximate the Blinn model closely, with exponent α = σ−2. The
difference is small at typical exponents, as demonstrated by our
results. We use the Blinn model in all our renderings. The difference
between one and two lobes is illustrated in Figure 4.

Fresnel Term The apparent brightness of specular reflection de-
pends on the angles of incidence and exitance through Fresnel effects.
The lobe we observe contains these effects baked in. To model the
apparent brightening and dimming with different elevation angles,
we assume that the surface is a dielectric with IOR of roughly 1.65,
and approximately cancel the Fresnel effect by dividing the spec-
ular albedo by the corresponding Schlick Fresnel prediction with
F0 = 0.06. In renderings, we use the same assumption to reintroduce
the effect for novel viewing and incidence angles. Validation results
are shown for our datasets in Figure 10.

5.3 Rendering

The model data (albedos, normals, glossiness, kurtosis) is extremely
easy to use in a renderer. The diffuse albedo is standard, and the
specular model is a sum of two Fresnel-modulated Blinn lobes.

6 Full Image Formation Model

Combining everything in the preceding sections, our full image
formation model is

L j(p→ E) =
∫
R2

f′(x;p,ad ,as,σ ,γ,n)g j(x)dx , (9)

where

f′(x;p,ad ,as,σ ,γ,n) =[
adA(x;p,n)

3

∑
k=1

ND,k(x;p)+as

2

∑
l=1

N S,l(x;p,E,σ ,γ,n)

]
NW (x)N E(x;p) (10)

is our approximation to f(x;p). The observed radiance is an inner
product, taken over the screen, between the displayed 2D pattern g j

and the function f′ that encodes the unknown reflectance function,
known geometric quantities and screen emission, using Gaussian

approximations to several of the terms. Figure 5 illustrates the
components.

The terms related to the diffuse Gaussians, the window function and
emission distribution only depend on the geometric configuration
and not any of the unknown parameters, and we can therefore analyt-
ically compute the multiplications NDWE,k(x;p) :=ND,kNWN E

and NWE(x;p) :=NWN E in a pre-processing pass.

Fourier Transform We need the Fourier transform of the model to
predict the values of the measurements Zi, j by the unknowns. This is
relatively simple to obtain due to the closedness of Gaussians under
multiplication, convolution, and Fourier transform, and a simple
formula we’ve derived for the Fourier transform of the affine function
times a Gaussian. Denoting the Fourier transformed functions by a
hat, the result is

f̂′(ω;p,ad ,as,σ ,γ,n) =

ad

3

∑
k=1

ÂDWE,k(ω;p,n)N̂DWE,k(ω;p)

+as

2

∑
l=1

N̂ S,l(ω;p,E,σ ,γ,n)N̂WE(ω;p) , (11)

where

ÂDWE,k(ω;p,n) =
d(p)

π

(
−
√
−1ΣDWE,kT>n

)>
ω

+
d(p)

π

(
µ>DWE,kT>n+n>(t−p)

)
, (12)

and ΣDWE,k and µDWE,k are the covariances and means of the respec-
tive Gaussians. Despite an uninviting initial appearance, the result is
simple to evaluate for any measured position pi at any 2D frequency
ω j . In particular, we estimate that evaluating this formula is several
orders of magnitude faster than brute force numerical integration of
Equation 9 using a traditional BRDF model.

7 Optimization

We pose the problem of finding reflectance parameters given the
data as a Maximum A Posteriori (MAP) problem, and solve it us-
ing nonlinear optimization (Levenberg-Marquardt; derivatives are
computed using finite differences). We minimize the sum of squared
differences between the model predictions and the measurements at
every surface point, frequency, and color channel simultaneously;
real and imaginary components are stacked as real-valued pairs. The
specular glossiness parameter σ can reach values that are very close
to zero, but must not be negative. To improve the scaling and to
prevent negative values, we optimize logσ instead. Similarly, we
optimize logγ−1 to ensure γ > 1.

Initial Guess The optimization starts from an initial guess: nor-
mals are initialized as perpendicular to the sample plane, and both
glossiness and kurtosis are set to a low, constant value. Initial values
for diffuse and specular albedos are heuristically determined from
the data. As seen in Figure 2, the contribution of the diffuse compo-
nent typically fades out around frequency 6. We use the magnitude
of the measurement at this frequency to compute a specular albedo
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Figure 6: Datasets captured. Top row: Viewpoints used for data capture. Bottom row: Viewpoints used for relighting for ground-truth
comparison in Figure 9. All photographs are roughly clipped to the object region captured for reconstruction. The photos in the top row are for
illustrative purposes only, and were not used as an input to the solver.

initial guess. The diffuse albedo initial guess is obtained similarly
by also considering the zero frequency data. See Appendix D for
the detailed formulas.

Point-wise Priors To avoid incorrect local minima, such as a very
wide specular lobe that tries to fit to a diffuse observation, we state
Gaussian-distribution priors that bias all model parameters toward
plausible ranges. These point-wise priors are implemented as data-
independent additional residuals in the error metric; see Appendix E
for the implementation details and the numerical settings.

Multi-Resolution Scheme We initially condition the optimiza-
tion through data-dependent smoothness priors (Section 7.1) that
we gradually lift in the course of a hybrid multi-resolution scheme.
We start the model fit at the very low resolution of 32×32 pixels,
strongly penalizing spatial variation of the reflectance variables; we
also use an integrability prior that penalizes normal maps that cannot
be formed as gradients of a height field, by penalizing the magnitude
of the curl of the normal map (as normal maps originating from
height fields have zero curl). We then sequentially upsample the
solution by doubling its resolution, at each step relaxing the smooth-
ness and integrability priors, and running a few1 iterations of the
optimizer, until we reach a globally consistent but low resolution
(128×128) intermediate solution. We use this intermediate solution
as initial guess to a high-resolution optimization at 512×512 pixels,
where we drop the smoothness and integrability priors entirely and
optimize the data fit independently at each point. For performance
reasons, we do not optimize at the full data resolution of 1024×1024
but use a data-dependent upsampling scheme (Section 7.2) that pre-
serves fine detail. The same upsampling scheme is also used in the
multiresolution upsampling step.

7.1 Data-Dependent Smoothing

Our smoothness prior is implemented as a weighted sum of squared
finite differences of the model parameters. The weights are chosen
according to a heuristic that determines how plausible a smoothness
assumption locally is: neighboring points with similar measure-
ment data are expected to obtain similar values for the unknown
reflectance parameters; however, when the data exhibits rapid spatial
variation, the heuristic relaxes the smoothness constraint.

We compute approximate conservative upper bounds on the possible
variation of the albedos using suitably scaled spatial derivatives of
the measured data itself (Appendix E). These bounds are used as
weights of the spatial smoothness priors. This prevents the solver
from introducing rapid albedo variation in smooth regions, while al-

1Iterations per resolution: 32×32: 12; 64×64: 3; 128×128: 3; 512×512: 4.

lowing sharp step edges where the data contains them. For glossiness
and kurtosis maps, similar heuristics are more difficult to formulate,
and we simply use a constant-weight penalty on spatial variation.

7.2 Upsampling

We upsample the intermediate and final solutions using the following
scheme that, in spirit, resembles joint bilateral upsampling [Kopf
et al. 2007]. Let I be the spatial index of a point in the high resolution
data Zhi

I , and i an index in the low resolution data Zlo
i and solution

image Ulo
i . We solve the following problem separately at each

high-resolution spatial index I. Let q be a neighborhood of the
corresponding pixel i in the low-resolution solution (we use a 5×5
window). We find a non-negative least squares approximation to Zhi

I
by solving the problem

argmin
w

∥∥∥Zhi
I − ∑

m∈q
wmZlo

m

∥∥∥2
s.t. w≥ 0 (13)

with an additional soft constraint ∑w = 1, i.e., we find a local
explanation of the high-resolution data as a convex combination of
the low-resolution data. The upsampled solution is obtained simply
as a linear combination of the low-resolution data using the same
weights: Uhi

I = ∑m∈q wmUlo
m .

8 Results

We demonstrate reconstructions for six datasets. We captured the
input images using a Canon 5D Mark II and illuminated the scenes
with a 24-inch IPS display tilted by roughly 45◦ (Figure 1, left),
with the exception of the BLUEBOOK dataset, which was illumi-
nated by a Lenovo laptop screen (Figure 8). The Fourier transform
was sampled at frequencies {1,2,3,4,6,10,20,40} on the x- and
y-axis of the frequency plane, and the corresponding integer frequen-
cies {(1,1),(2,2), ...} on the two diagonals, and at (0,0). In total,
131 photographs were captured per material sample (including the
geometric calibration image).

The different datasets and the viewpoints used for the capture and
for the ground truth photos are shown in Figure 6. The resulting
model fits are shown in Figure 7, by individual component. All
solutions have been computed with identical optimizer settings, i.e.,
with no scene-dependent parameter tuning, to resolution 1024×1024
as described in Section 7.

Figure 9 presents relighting results for novel views and illumination
conditions for all datasets: we used the capture setup to simulate light
sources at different positions, by displaying a white disk on black
on the screen, and simulated the same conditions when rendering
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Figure 7: Model fits. The normal map has been exaggerated by a factor of two for display purposes. The glossiness image shows the values
1/σ . All images can be found on the project website for closer inspection.

the model for comparison. (Note that there are slight differences
in geometric alignment due to imperfect registration.) Many of
the effects are more clearly seen under moving illumination and
viewpoints. Please see the supplemental video for further results.

The first dataset MIX contains multiple layers of different types of
cardboard, paper and tape, with various pencil markings, scratches,
steep slopes and other features. Our algorithm has correctly resolved
the wide range of reflectance from nearly diffuse paper to almost
mirror-like packaging tape. The rich normal detail in various surface
types, layerings, folds and scratches has been convincingly captured.
Note also the interesting and correctly resolved specular color effect
on the marker markings. The sample deviates from planarity by
several millimeters and includes notable self-shadowing. The model
gracefully absorbs these effects, and the result remains plausible.

PYNCHON is a book cover with a shiny, worn plastic finish that con-
tains subtle variations in normals (scratches) and glossiness (scuffs).
This dataset benefits particularly much from the two-lobe model, as
the specular lobe has slowly falling of tails.

Figure 8: A laptop screen was used for the BLUEBOOK set.

ECO is a book jacket featuring debossed letters and a shiny swirl.
The heavy paper has subtle normal variation, and a very wide specu-
lar component which we correctly capture.

The fourth dataset CRUMPLED is a crumpled paper with pieces of
highly specular tape on it. It demonstrates the recovery of diffuse
normals, and the continuity of the normal map across the diffuse-
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Figure 9: Still frames comparing photographs and renderings of the datasets under novel lighting conditions. The viewing angle is the same
for both lighting configurations, but the pictures are cropped to concentrate on different parts of the sample. The view has been rotated by 90
or 180 degrees from the capture angle (cf. Figure 6).

specular edges. Some very smooth specularity has been resolved
into the paper as well. The solution also shows extremely sharp
specularity in the tape. The smallest resolved glossiness values are
around 0.004, corresponding to a Blinn exponent of roughly 60 000.
Accordingly, the sharp boundary of the illuminating disk becomes
visible in the reflection, and is equally sharp in the photograph and
in the reconstruction. Subtle differences in apparent shape of the
highlights are at least partly due to misregistration of the two views
and due to missing parallax (we do not reconstruct geometry).

TILE shows a moderately specular tile with both repeating texture
as well as steep holes. Both features have been resolved well. Some
cross-talk is observed in the deeper, possibly interreflecting and
self-shadowing dents, but the errors are imperceptible in renderings.

BLUEBOOK is again a book cover with rich wear and tear, interesting
grooves resulting from a heavy-handed person having written on a
piece of paper on top of the book, and a near mirror-like lamination.
In contrast to the previous datasets, it has been captured with the
laptop-based setup. This could explain the small amount of cross-
talk across reflectance components, unique to this dataset, suggesting
that the laptop setup is of slightly lower quality than the system
based on the desktop screen. In fact, upon visual inspection the
spatial emission characteristic of the laptop screen used for capturing
BLUEBOOK appears more complex than that of desktop screen,
offering a probable error source. Nevertheless, interesting normal
detail and scuffing are still captured.

Lastly, Figure 10 shows a novel, grazing viewpoint for each dataset,

illustrating how the post-fit addition of the Fresnel term leads to
results consistent with the real reflectance.

8.1 Performance

We computed the results and measured the performance of our cur-
rent Matlab implementation on a quad-core Intel Core i7-Q820 1.73
GHz laptop with 12 gigabytes of RAM. The full optimization proce-
dure takes approximately two hours per dataset. The three significant
stages of the computation are the regularized low-resolution phase
(15 minutes), the high-resolution final solve (1.5 hours), and the final
upsampling (10 minutes). Most of the computation time is spent
evaluating the model and its derivatives.

8.2 Discussion

As the results show, our method convincingly captures a range of
different materials on near-planar samples. Through the explicit
consideration of geometric terms and the windowing of the Fourier
basis, we even support a wide range of normal variations, as long as
the reflectance lobe reaches the monitor and near-planarity is met on
a coarse scale. (See, for instance, MIX and TILE that exhibit areas
with steep slopes.)

While there is no fundamental reason why our model could not be
extended to moderate anisotropy (by adjusting the half-vector lobes
accordingly), we found that the current degrees of freedom are just
in the range that allows a stable model fit with the given number of
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Without Fresnel With Fresnel Photograph

Figure 10: Our simple approximation to Fresnel effects is sufficient
to capture the most obvious effects of incidence and exitant angles
on the strength of specular reflectance. The pictures shows each
captured dataset rendered and photographed from a significantly
lower viewing angle than the 45 degree angle used for capture. Left:
our rendering, without accounting for changes in Fresnel reflectance.
Middle: our result, with Fresnel approximation. Right: photograph.

input photographs. Rather than increasing the number of measured
basis functions we decided against modeling anisotropy, to keep the
measurement times acceptable.

In general, reflectances that significantly break our model assump-
tions (anisotropy, shadowing, interreflections, etc.) will have an
unexpected expression in the Fourier-space measurements and might
misguide the model fit. Figure 11 shows our results for two such
materials. While the optimizer has converged to a solution that
plausibly captures many of the features in the materials, the model
is unable to properly express the anisotropy and visibility effects.
In particular, the optimizer has introduced spurious specularity to
explain the self-shadowing and extreme normal variations of the
towel. The highly anisotropic specular lobe of the brushed metal
has been replaced with a moderately glossy isotropic lobe. Other
unmodeled effects, such as back-scattering, simply do not manifest
themselves under the chosen measurement geometry and would still
allow the method to recover good normals and a plausible specular
highlight. For multi-lobe reflectances, however, such as in fur or
hair, we would not expect the system to produce plausible results.

Photograph Our result

Ground truth, original angle

Our result, original angle Our result, novel angle

Figure 11: Failure cases. Top left: a photograph of an anisotropic
brushed metal surface. The reflectance lobe is very narrow in the
horizontal direction, and wider in the vertical direction. Top right:
our isotropic lobe model captures overall color, brightness, and
texture, but is unable to reproduce the anisotropy. Middle: a towel
(photograph). Bottom left: our model fit reproduces the appearance
from the original capture direction, but does not generalize well to
novel views (bottom right). The complex visibility caused by the
fibers and bumps is mistaken for specularity in the model fit.

Due to the lack of a built-in Fresnel model component, some po-
larization effects may become baked into our reconstructions. We
consider this to be the biggest shortcoming of our current method.
Nevertheless, our rendering heuristic reproduces the qualitative ef-
fects and yields good matches with photographs in our results. In
particular, no parameters were tuned per-material.

9 Conclusion

We presented a novel method to acquire the SVBRDF of near-planar
objects using commodity hardware. We believe to be the first to
produce consistent normals and reflectance for both diffuse and
specular surfaces using a pervasively available capture system. The
simplicity of our setup and the observed robustness of our optimizer
make us believe our system enables spatially varying reflectance
capture for a wide audience.
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A Calibration
Monitor calibration We obtain the monitor calibration (Sec-
tion 4.2) as follows. This procedure only needs to be performed once
for any given monitor. We capture a dataset from a sheet of plain
white paper, which we assume to be roughly Lambertian. We then
run a version of the optimization problem with the diffuse albedo
fixed to constant one, specular albedo to zero, and the normals to
[0 0 1]>, and the glossiness and kurtosis ignored. We choose an
evenly spaced subset of a few hundred pixels and optimize to find
the four monitor Gaussian parameters that give the best fit to the
data there. This procedure also fixes the radiometric scale so that
the albedo variables will be in proportion to the calibration paper
albedo.

Geometric calibration We use simple geometric calibration
method to measure the required screen transformation matrix T,
screen origin vector t and the camera position E. This requires only
a single photo taken from the same configuration as the data images.
We require that a part of the screen must be visible in these photos,
and display an image of a white square on the monitor. Additionally,
we place a mirror and a square marker on the material sample plane.
This image is enough to compute the calibration and to rectify the
sample plane in the photos.

B Diffuse Model
We seek to approximate 1/D(x;p)4 by a mixture of Gaussians.
We first approximate a prototype function U(x) = 1/(x>x+ 1)2

by three zero-mean Gaussians with mixing coefficients and co-
variances αU,1 = 1.0391,αU,2 = 1.5027,αU,3 = 0.4583,ΣU,1 =

1.56172I,ΣU,2 = 0.71382I and ΣU,3 = 0.39752I. Conveniently,
U(x) can be translated and uniformly scaled to yield 1/D(x;p)4

for any p. The final approximation is the mixture ∑k ND,k(x;p)
with mixing coefficients αD,k(p) = d(p)−2αU,k, means µD,k(p) =
T>(p− t) and covariances ΣD,k(p) = d(p)2ΣU,k.

C Specular Model

We now describe how the parameters of the two Gaussians N S,l

(Section 5.2) are obtained. Our goal is to formulate a Gaussian
approximation to a microfacet distribution in a half-vector parame-
terization, and map the corresponding lobe onto the screen plane.

A general half-angle parameterized BRDF lobe has the form
f (ωi,ωo) = gn(h). For example, in the Blinn model, gn(h) =
(h>n)α . We parameterize the half-vector on the plane Πp,n or-
thogonal to n at unit distance from p, with coordinates y, such that
h = PY(y) is the projection from Πn,p onto the unit sphere centered
at p. With p, n, and ωo fixed, h is a function of the incident angle
ωi only (and vice versa), and because the incident angle is deter-
mined by the screen point x, the screen and the half-vectors are
in 1-1 correspondence: y = T (x) := P−1

Y (N(Hωo(PX(x)))), where
PX(x) determines ωi from x, Hωo averages a vector with ωo, and
N normalizes the result. The function T maps the screen point x
onto a point y on Πp,n. The lobe, parameterized over the plane, is
g′n(y) := gn(PY(y)), and it inherits its radially symmetric bell shape
from gn.

We model a microfacet distribution g′n on the normal plane by
the average of two isotropic zero-mean Gaussians. Their stan-
dard deviations are determined by glossiness σ and the kurtosis
parameter γ by σ1 = cσ/γ and σ2 = cσγ , where the correction
factor c =

√
2/(γ−2 + γ2) ensures that the standard deviation of

the summed lobe is σ . At γ = 1 the lobes coincide and reduce to
the single-lobe case. Higher values give pointier lobes. The de-

sired BRDF lobe on the screen plane is the corresponding sum of
Gaussians mapped back onto the screen through the first-order ap-
proximation of the mapping T−1 evaluated at y = (0,0), the center
of the microfacet distribution. The affine approximation ensures
the result is still a sum of Gaussians over the screen, with the main
stretching and scaling effects, e.g., the narrowing of off-specular
reflection, included.

D Initial guess

Let ω6 = [6 6]>, ω0 = [0 0]>, σ0 = 0.03, γ0 = 1.03, n0 = [0 0 1]>.
Our specular albedo initial initial guess at point pi is as,0 :=∣∣Zi,ω6

∣∣/ ∣∣f̂′(ω6;pi,0,1,σ0,γ0,n0)
∣∣. Note that it reduces to the

true albedo, assuming ρd(ω6) = 0 and σ0,γ0 and n0 are cor-
rect. Otherwise the value is a rough approximation to the spec-
ular albedo. By similar considerations, we use the initial guess
ad,0 := (Zi,ω0 −

∣∣Zi,ω6

∣∣)/f̂′(ω0;pi,1,0,σ0,γ0,n0) for the diffuse
albedo.

E Priors
The residual we optimize is a stacked vector of all the data fit terms
and the priors. The data fit vector contains the difference between
the model prediction and the data, for every pixel, frequency, color
channel and complex number component, weighted by the factor 160.
All of our priors are specified as linear functions of the unknowns.

For every unknown uk, we specify the expected value µk and stan-
dard deviation νk, reflecting our beliefs about plausible range of
values, by adding a residual (uk − µk)/νk. The values we use
are µ = 0,ν = 1 for diffuse albedo, µ = 0,ν = 0.5 for specular
albedo, µ =−3,ν = 1 for logσ , µ =−1,ν = 0.5 for logγ−1, and
µ = 0,ν = 0.1 for normals.

In the low-resolution, spatially regularized stage, we construct the
finite difference matrices Dx and Dy. The normal map integrability
prior is specified by the residuals (−Dynx +Dxny)/0.01, where nx
and ny are the stacked vectors of all normals in tangent parameter-
ization; this penalizes the finite difference curl of the normal map.
For log glossiness and kurtosis, we add a residual consisting of finite
differences in both directions, with unit weighting.

The spatially-varying albedo smoothness prior weights are computed
as follows. We compute the model prediction of the DC term (zero
frequency) for a perfectly diffuse material at every surface point. We
divide the measured DC frequency photo by the diffuse prediction
map and evaluate the spatial derivatives of the resulting image. The
reciprocal of the derivative image, multiplied by 1/2, is used as the
diffuse smoothness prior weight map. The specular weights are
computed similarly, using a perfectly specular material in the first
step. To gradually down-weight the spatial priors, they are further
weighted by the factor 32/w where w is the image dimension at the
current multi-scale optimization stage.
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